Fabrication of Highly Ordered Two-Dimensional Graphene Arrays on Patterned Substrate

Article Preview

Abstract:

We report a facial and straightforward method to fabricate highly ordered two-dimensional graphene arrays. A monolayer molecule pattern with alternative hydrophilic/hydrophobic wetting property was first formed by using micro-contact printing (μCP) and self-assembly techniques. Water droplets were condensed on the hydrophilic areas under saturated water atmosphere, which could be used to construct the ordered graphene arrays. The optical microscopy and atom force microscopy results indicate that ring and porous arrays of graphene can be obtained with low and high concentration of graphene solutions, respectively. Without the water droplet template, graphene patterns with square structure were produced.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

231-236

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Geim and K.S. Novoselov: Nat. Mater. 6. (2007), p.183.

Google Scholar

[2] A.K. Geim: Science 324. (2009), p.1530.

Google Scholar

[3] Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen and H. Zhang: ACS Nano 4. (2010), p.3201.

Google Scholar

[4] B. Zhan, C. Li, J. Yang, G. Jenkins, W. Huang and X. Don: Small (2014), p. DOI: 10. 1002/smll. 201400463.

Google Scholar

[5] F. Li, M. Xue, X. Ma, M. Zhang and T. Cao: Anal. Chem. 83. (2011), p.6426.

Google Scholar

[6] G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey and H. Zhang: Langmuir 26. (2010), p.6164.

Google Scholar

[7] V.C. Tung, M.J. Allen, Y. Yang and R.B. Kaner: Nat. Nanotechnol. 4. (2009), p.25.

Google Scholar

[8] Y. Zhou and K.P. Loh: Adv. Mater. 22. (2010), p.3615.

Google Scholar

[9] M. Geissler and Y. Xia: Adv. Mater. 16. (2004), p.1249.

Google Scholar

[10] Y. Xia and G.M. Whitesides: Angew. Chem. Int. Ed. 37. (1998), p.550.

Google Scholar

[11] A. Perl, D.N. Reinhoudt and J. Huskens: Adv. Mater. 21. (2009), p.2257.

Google Scholar

[12] M. -J. Chang, C. -R. Pang, J. Liu, H. Bai, J. Deng, Z. -G. Xu and H. -L. Zhang: J. Colloid Interface Sci. 360. (2011), p.826.

Google Scholar

[13] J. Liu, M.J. Chang, Y. Ai, H.L. Zhang and Y. Chen: ACS Appl. Mater. Interfaces 5. (2013), p.2214.

Google Scholar

[14] G. Lu, W. Li, J. Ya, G. Zhang, B. Yang and J. Shen: Adv. Mater. 14. (2002), p.1049.

Google Scholar

[15] J. Liu, M. -J. Chang, Y. Ai, H. -L. Zhang and Y. Chen: ACS Appl. Mater. Interfaces 5. (2013), p.2214.

Google Scholar

[16] M.J. Chang, Y. Ai, L. Zhang, F. Gao and H.L. Zhang: J. Mater. Chem. 22. (2012), p.7704.

Google Scholar

[17] G. Zhang, X. Yan, X.L. Hou, G. Lu, B. Yang, L.X. Wu and J. Shen: Langmuir 19. (2003), p.9850.

Google Scholar

[18] N. -N. Chai, J. Zeng, K. -G. Zhou, Y. -L. Xie, H. -X. Wang, H. -L. Zhang, C. Xu, J. -X. Zhu and Q. -Y. Yan: Chem. Eur. J. 19. (2013), p.5948.

Google Scholar

[19] M. -J. Chang, Y. Ai, L. Zhang, F. Gao and H. -L. Zhang: J. Mater. Chem. 22. (2012), p.7704.

Google Scholar