Enhancement of Hydrophobility and Thermal Property of Graphene Oxide by Paratoluidine Chemical Functionalization

Article Preview

Abstract:

Graphene oxide (GO) is typically synthesized by graphite powder under strong oxidizing reaction, possessing with the same set of functional groups: epoxy and hydroxyl in basal plane and carboxyl and hydroxyl groups existence on the flake edges which endow GO with amphipathy. GO and its functionalized derivatives have been successfully tested in many domains, such as polymer composites, biosensors, drug delivery systems, etc. In this paper, GO was prepared by a modified Hummers method employing improved process (preparation and separation), aiming at industrialization with the lowest cost. Moreover, some novel functional groups with different properties were controlled chemically grafted onto GO to modify the wettability and reaction activity with other materials. The hydrophobicity and the thermal property of graphene oxide were enhanced by chemical functionalization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

243-247

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Brodie: Ann. Chim. Phys., Vol. 45 (1855), p.351.

Google Scholar

[2] L. Staudenmaier: Ber. Dtsch. Chem. Ges., Vol. 31 (1898), p.1481.

Google Scholar

[3] W.S. Hummers and R.E. Offeman: J. Am. Chem. Soc., Vol. 80 (1958), p.1339.

Google Scholar

[4] A.M. Dimiev, L.B. Alemany and J.M. Tour: ACS Nano., Vol. 7 (2013) No. 7, p.576.

Google Scholar

[5] C. Bao, L. Song, W. Xing, B. Yuan, C. A. Wilkie, J. Huang, Y. Guo and Y. Hu: J. Mater. Chem., Vol. 22 (2012), p.6088.

Google Scholar

[6] D.R. Dreyer, S. Park, W. Bielawski and R.S. Ruoff: Chem. Soc. Rev., Vol. 39 (2010), p.228.

Google Scholar

[7] J. Shen, B. Yan, M. Shi, H. Ma, N. Li and M. Ye: J. Mater. Chem., Vol. 21 (2011), p.3415.

Google Scholar

[8] J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull and J. Huang: J. Am. Chem. Soc., Vol. 132 (2010), p.8180.

Google Scholar

[9] V.C. Tung, J.H. Huang, I. Tevis, F. Kim, J. Kim, C.W. Chu, S. I. Stupp and J. Huang: J. Am. Chem. Soc., Vol. 133 (2011), p.4940.

DOI: 10.1021/ja1103734

Google Scholar

[10] J. Kim, L.J. Cote and J. Huang: Acc. Chem. Res., Vol. 45 (2012), p.1356.

Google Scholar

[11] Z. Liu, J.T. Robinson, X. Sun and H. Dai: J. Am. Chem. Soc., Vol. 130 (2008), p.10876.

Google Scholar

[12] L. Zhang, J. Xia, Q. Zhao, L. Liu and Z. Zhang; Small, Vol. 6 (2010), p.537.

Google Scholar

[13] F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, K. Sohn and J. Huang: Adv. Funct. Mater., Vol. 20 (2010), p.2867.

Google Scholar

[14] A. Lerf, H. He, M. Forster and J. Klinowski: Phys. Chem. B, Vol. 102 (1998), p.4477.

Google Scholar

[15] D. Li and R.B. Kaner: Science, Vol. 320 (2008), p.1170.

Google Scholar

[16] S. Park and R.S. Ruoff: Nat Nanotechnol., Vol. 4 (2009), p.217.

Google Scholar

[17] Y.C. Yuan, M.Z. Rong and M.Q. Zhang: Polymer, Vol. 49 (2008), p.2531.

Google Scholar

[18] T. Ramanathan, F.T. Fisher, R.S. Ruoff and L.C. Brinson: Chem Mater., Vol. 17 (2005), p.1290.

Google Scholar

[19] X.Z. Tang, W. Li, Z.Z. Yu, M.A. Rafiee, J. Rafiee, F. Yavari and N. Koratkar: Carbon, Vol. 49 (2011), p.1258.

DOI: 10.1016/j.carbon.2010.11.044

Google Scholar

[20] Y. Xue, Y. Liu, F. Lu, J. Qu, H. Chen and L. Dai: J. Phys. Chem. Lett., Vol. 3 (2012), p.1607.

Google Scholar

[21] I.K. Moon, J. Lee, R.S. Ruoff and H. Lee: Nat. Commun., Vol. 1 (2010), p.73.

Google Scholar