[1]
Ting You, Guangxiang Cao, Xinyu Song, et al. Alcohol-thermal synthesis of flowerlike hollow cobalt tungstate nanostructures[J]. Materials Letters 62 (2008): 1169-1172.
DOI: 10.1016/j.matlet.2007.08.005
Google Scholar
[2]
Liang Zhen, Wen-Shou Wang, Cheng-Yan Xu, et al. A facile hydrothermal route to the large-scale synthesis of CoWO4 nanorods[J]. Materials Letters 62 (2008): 1740-1742.
DOI: 10.1016/j.matlet.2007.09.076
Google Scholar
[3]
Zuwei Song, Junfeng Ma, Huyuan Sun, et al. Low-temperature molten salt synthesis and characterization of CoWO4 nano particles[J]. Materials Science and Engineering B, 163 (2009): 62-65.
DOI: 10.1016/j.mseb.2009.05.002
Google Scholar
[4]
U. M. Garcia-Perez, A. Martinez-de la Cruz, J. Peral. Transition metal tungstates synthesized by co-precipitation method: Basic photocatalytic properties[J]. Electrochimica Acta 81 (2012): 227-232.
DOI: 10.1016/j.electacta.2012.07.045
Google Scholar
[5]
R. C. Pullar, S. Farrah, N. McN. Alford. MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics[J]. Journal of the European Ceramic Society 27 (2007): 1059-1063.
DOI: 10.1016/j.jeurceramsoc.2006.05.085
Google Scholar
[6]
Somchai Thongtem, Surangkana Wannapop, Titipun Thongtem. Characterization of CoWO4 nano-particles produced using the spray pyrolysis[J]. Ceramics International 35 (2009): 2087-(2091).
DOI: 10.1016/j.ceramint.2008.11.014
Google Scholar
[7]
E. Tomaszewicz. Reactivity in the solid state between CoWO4 and RE2WO6 where RE=Sm, Eu, Gd[J]. Thermochimica Acta 447 (2006): 69-74.
DOI: 10.1016/j.tca.2006.05.002
Google Scholar
[8]
Irina Kärkkänen, Margus Kodu, Tea Avarmaa, et al. Sentivity of CoWO4 thin films to CO[J]. Procedia Engineering, 5 (2010): 160-163.
DOI: 10.1016/j.proeng.2010.09.072
Google Scholar
[9]
S. Rajagopal, D. Nataraj, O. Yu. Khyzhun, et al. Hydrothermal synthesis and electric properties of FeWO4 and CoWO4 nanostructures[J]. Journal of Alloys and Compounds, 493 (2010): 340-345.
DOI: 10.1016/j.jallcom.2009.12.099
Google Scholar
[10]
Sagrario M. Montemayor, Antonio F. Fuentes. Electrochemical characteristics of lithium insertion in several 3D metal tungstates (MWO4, M=Mn, Co, Ni and Cu) prepared by aqueous reactions[J]. Ceramics International, 30 (2004): 393-400.
DOI: 10.1016/s0272-8842(03)00122-6
Google Scholar
[11]
S.J. Naik, A.V. Salker. Solid state studies on cobalt and copper tungstates nano materials[J]. Solid State Sciences, 12 (2010): 2065-(2072).
DOI: 10.1016/j.solidstatesciences.2010.08.028
Google Scholar
[12]
Cuiling Zhang, Donglin Guo, Chenguo Hu, et al. Large-Scale synthesis and photoluminescence of cobalt tungstate nanowires[J]. Physical Review B 87, 035416 (2013): 1-8.
Google Scholar
[13]
Huifang Shao, Edwin L. Kugler, Wenping Ma, et al. Effect of temperature o structure and performance of in-house cobalt-tungsten carbide catalyst for dry reforming of methane[J]. Ind. Eng. Chem. Res. 44 (2005): 4914-4921.
DOI: 10.1021/ie049186r
Google Scholar
[14]
Fang Yu, Liyun Cao, Jianfeng Huang, et al. Effects of pH on the microstructures and optical property of FeWO4 nanocrystallites prepared via hydrothermal method[J]. Ceramics International 39 (2013): 4133-4138.
DOI: 10.1016/j.ceramint.2012.10.269
Google Scholar
[15]
Jiaheng Lei, Liping Guo, Mingkun Wei, et al. Synthesis and study of CoWO4-WO3 nano powders[J]. Letters of Wuhan Industrial University, 1999, Vol 21, No. 1: 19-21. (In Chinese).
Google Scholar
[16]
Zuwei Song, Huyun Sun, Xunyun Li, et al. Preparation of nano cobalt tungstate by low temperature molten method[J]. Inorganic Industry, 2010, Vol 42, No. 3: 23-25. (In Chinese).
Google Scholar
[17]
Ye'an Yan. Structural Analysis of Polyoxotungstates anion[J]. College Chemistry, 2008, Vol 23, No. 3 : 59-63. (In Chinese).
Google Scholar