Preparation and Characterization of Fibri-Form Silica from Short Chrysotile Fibers by Mix-Roasting

Article Preview

Abstract:

Fibri-form silica was extracted from short chrysotile fibers by mix-roasting with ammonium bisulfate. The fibri-form silica were characterized by X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and N2 adsorption isotherms. The results show that the fibri-form silica with disordered crystalline structure, but also in fibrous morphology. The surface area and pore volume of fibri-form silica are 181.66 m2/ g and 0.44 cc/ g, respectively. The structure of fibri-form silica is stable, no phase transformed from 50 to 1200 oC.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

313-318

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Wypych, W. H. Schreiner and E. Richard. Journal of Colloid and Interface Science, Vol. 276 (2004) No. 1, p.167.

Google Scholar

[2] K. Anastasiadou, D. Axiotis and E. Gidarakos. Journal of Hazardous Materials, Vol. 179 (2010) No. 1-3, p.926.

Google Scholar

[3] K. Yanagisawa, et al. Journal of Hazardous Materials, Vol. 163. (2009) No. 2-3, p.593.

Google Scholar

[4] E. Foresti, et al. Analytical and Bioanalytical Chemistry, Vol. 376. (2003) No. 5, p.653.

Google Scholar

[5] X.R. Wang, et al. Lung Cancer, Vol. 75. (2012) No. 2, p.151.

Google Scholar

[6] E. Gazzano, et al. Toxicology and Applied Pharmacology, Vol. 206. (2005) No. 3, p.356.

Google Scholar

[7] K. Sakai, et al. Annals of Occupational Hygiene, Vol. 58. (2014) No. 1, p.103.

Google Scholar

[8] P. C. Song, et al. Acta petrologica et mineralogica, Vol. 32 (2013) No. 06, p.905.

Google Scholar

[9] A.F. Gualtieri, M.L. Gualtieri and M. Tonelli. Journal of Hazardous Materials, Vol. 156 (2008) No. 1-3, p.260.

Google Scholar

[10] F. Wypych, et al. Journal of Colloid and Interface Science, Vol. 283 (2005) No. 1, p.107.

Google Scholar

[11] K. Liu, et al. Journal of Non-Crystalline Solids, Vol. 353 (2007) No. (16-17), p.1534.

Google Scholar

[12] L. Wang, et al. Journal of Colloid and Interface Science, Vol. 295 (2006) No. 2, p.436.

Google Scholar

[13] L. Wang, et al. Applied Surface Science, Vol. 255 (2009) No. 17, p.7542.

Google Scholar

[14] W.L. Rui L.A. Acta geologica ainica, Vol. 80 (2006) No. 2, p.180.

Google Scholar

[15] K. Okada, et al. Microporous and Mesoporous Materials, Vol. 21 (1998) No. (4-6), p.289.

Google Scholar

[16] J. Temuujin, K. Okada and K.J.D. MacKenzie. Applied Clay Science, Vol. 22 (2003) No. 4, p.187.

Google Scholar

[17] R. Kusiorowski, et al. Journal of Thermal Analysis and Calorimetry, Vol. 109(2012) No. 2, p.693.

Google Scholar

[18] G. Anbalagan, et al. Applied Clay Science, Vol. 42 (2008) No. (1-2), p.175.

Google Scholar

[19] M.A. Saada, et al. Microporous and Mesoporous Materials, Vol. 122 (2009) No. (1-3), p.275.

Google Scholar

[20] M. Rozalen, and F.J. Huertas. Chemical Geology, Vol. 352 (2013), p.134.

Google Scholar

[21] M. Sprynskyy, J. NiedojadŁo and B. Buszewski. Journal of Physics and Chemistry of Solids, Vol. 72 (2011) No. 9, p.1015.

Google Scholar

[22] T. Zaremba, et al. Journal of Thermal Analysis and Calorimetry, Vol. 101 (2010) No. 2, p.479.

Google Scholar