Phase Transition of Ball-Milled Ni50-xMn37In13Cox (x=0,5) Alloy Powders

Article Preview

Abstract:

Ni50-xMn37In13Cox (x=0,5) alloy powders were obtained by ball-milling from the corresponding ribbon precursors. The as-milled Ni50Mn37In13 and Ni45Mn37In13Co5 powders show disordered fct and fcc structures respectively, due to the larger lattice distortion in Ni45Mn37In13Co5. DSC and XRD results show that the high-temperature annealing will lead to a one-step ordering process from fct to Heusler structure in Ni50Mn37In13, and a two-step ordering process, including fcc to bcc and bcc to Heusler phase transitions in Ni45Mn37In13Co5. After annealed at 400°C and 650°C, the martensitic transformation behavior is gradually and partially restored in Ni50Mn37In13 powders. As modulated by the annealing temperatures, the martensitic transformation temperatures increase with the grain sizes of Ni50Mn37In13 powders. However, the martensitic transformation is almost completely suppressed in 650°C annealed Ni45Mn37In13Co5 powders with only some weak reflection peaks from 7M martensitic phase observed in XRD pattern.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

377-383

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Chmielus, X.X. Zhang, C. Witherspoon, D.C. Dunand and P. Müllner: Nature Mater. Vol. 8 (2009), p.863.

Google Scholar

[2] L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J. -L. Tamarit, S. Aksoy and M. Acet: Nature Mater. Vol. 9 (2010), p.478.

DOI: 10.1038/nmat2731

Google Scholar

[3] J. Liu, S. Aksoy, N. Scheerbaum, M. Acet and O. Gutfleisch: Appl. Phys. Lett. Vol. 95 (2009), p.232515.

Google Scholar

[4] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida: Nature Vol. 439 (2006), p.957.

DOI: 10.1038/nature04493

Google Scholar

[5] H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov and H.J. Maier: Adv. Funct. Mater. Vol. 19 (2009), p.983.

Google Scholar

[6] L. Porcar, D. Bourgault and P. Courtois: Appl. Phys. Lett. Vol. 100 (2012), p.152405.

Google Scholar

[7] D.C. Dunand and P. Müllner: Adv. Mater. Vol. 23 (2011), p.216.

Google Scholar

[8] A. Planes, L. Mañosa and M. Acet: J. Phys.: Condens. Matter Vol. 21 (2009), p.233201.

Google Scholar

[9] J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch: Appl. Phys. Lett. Vol. 92 (2008), p.162509.

DOI: 10.1063/1.2913162

Google Scholar

[10] J. Dubowik, K. Zaleski, I. Gościańska, H. Glowiński and A. Ehresmann: Appl. Phys. Lett. Vol. 100 (2012), p.162403.

Google Scholar

[11] N. Scheerbaum, D. Hinz, O. Gutfleisch, K.H. Müller and L. Schultz: Acta Mater. Vol. 55 (2007), p.2707.

Google Scholar

[12] V.C. Solomon, J-Il Hong, Y.J. Tang, A.E. Berkowitz and D.J. Smith: Scripta Mater. Vol. 56 (2007), p.593.

Google Scholar

[13] Y.V.B. de Santanna, M.A.C. de Melo, I.A. Santos, A.A. Coelho, S. Gama and L.F. Cótica: Solid State Commun. Vol. 148 (2008), p.289.

DOI: 10.1016/j.ssc.2008.09.015

Google Scholar

[14] B. Tian, F. Chen, Y.X. Tong, L. Li, Y.F. Zheng, Y. Liu and Q.Z. Li: J. Alloys Compds. Vol. 509 (2011), p.4563.

Google Scholar

[15] B. Tian, F. Chen, Y. Liu and Y.F. Zheng: Intermetallics Vol. 16 (2008), p.1279.

Google Scholar

[16] D.M. Liu, Z.H. Nie, Y. Ren, Y.D. Wang, J. Pearson, P.K. Liaw and D.E. Brown: Metall. Mater. Trans. A Vol. 42A (2011), p.3062.

Google Scholar

[17] F. Chen. B. Tian, L. Li and Y.F. Zheng: Trans. Nonferrous Met. Soc. China Vol. 17 (2007), p. s614.

Google Scholar

[18] Y.D. Wang, Y. Ren, Z.H. Nie, D.M. Liu, L. Zuo, H. Choo, H. Li, P.K. Liaw, J.Q. Yan, R.J. McQueeney, J.W. Richardson and A. Huq: J. Appl. Phys. Vol. 101 (2007), p.063530.

DOI: 10.1063/1.2713370

Google Scholar

[19] B. Tian, F. Chen, Y. Liu and Y.F. Zheng: Mater. Lett. Vol. 62 (2008), p.2851.

Google Scholar

[20] K. Vallal Peruman, M. Mahendran, S. Seenithurai and R. Chokkalingam: J. Phys. Chem. Solids Vol. 71 (2010), p.1540.

Google Scholar

[21] B. Tian, F. Chen, Y.X. Tong, L. Li and Y.F. Zheng: J. Mater. Eng. Perform. Vol. 21 (2012), p.2530.

Google Scholar

[22] R. Santamarta, E. Cesari, J. Font, J. Muntasell, J. Pons and J. Dutkiewicz: Scripta Mater. Vol. 54 (2006), p. (1985).

DOI: 10.1016/j.scriptamat.2006.03.018

Google Scholar

[23] F. Albertini, S. Besseghini, A. Paoluzi, L. Pareti, M. Pasquale, F. Passaretti, C.P. Sasso, A. Stantero and E. Villa, J. Magn. Magn. Mater. Vol. 242 (2002), p.1421.

DOI: 10.1016/s0304-8853(01)00992-1

Google Scholar

[24] O. Heczko, P. Švec, D. Janičkovič and K. Ullakko: IEEE Trans. Magn. Vol. 38 (2002), p.2841.

Google Scholar