First-Principle Studies of a High Entropy Solid Solution of AlCoCrCuFeNix with Different Mole Fractions of Ni

Article Preview

Abstract:

The structural properties, elastic properties, and heat of formation of a high entropy alloy (HEA) of AlCoCrCuFeNi containing different mole fraction of Ni. The calculated results indicate that the lattice parameter decreased and the mass density increased as the mole fraction of Ni increased. The high entropy solid solutions AlCoCrCuFeNix using the FCC model are mechanically stable. The elastic properties have been deduced by Voigt-Reuss-Hill (VRH) approximations, and the calculated ratio of shear modulus to bulk modulus indicated that When the mole fraction of Ni was 0 in the FCC model, or 0.5 in both the BCC and FCC models, the high entropy solid solutions were considered ductile materials. All the HEAs are thermodynamically stable due to their negative heats of formation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

419-425

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ranganathan S. Current Science. 85 (2003) 1404.

Google Scholar

[2] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. Advanced Engineering Materials. 6 (2004) 299.

Google Scholar

[3] Huang P K, Yeh J W, Shun T T, Chen S K. Advanced Engineering Materials. 6 (2004) 74.

Google Scholar

[4] Yeh J W, Lin S J, Chin T S, Gan J Y, Chen S K, Shun T T, Tsau C H, Chou S Y. Metallurgical and Materials Transaction A. 35 (2004) 2533.

Google Scholar

[5] Hsu C Y, Yeh J W, Chen S K, Shun T T. Metallurgical and Materials Transactions A. 35 (2004) 1465.

Google Scholar

[6] Wu J M, Lin S J, Yeh J W, Chen S K, Huang Y S, Chen H C. Wear. 261 (2006) 513.

Google Scholar

[7] Zhang Y, Peng W J. Procedia Engineering. 27 (2012) 1169.

Google Scholar

[8] Yang X, Zhang Y, Liaw P K. Procedia Engineering. 36 (2012) 292.

Google Scholar

[9] Liu L, Zhu J B, Zhang C, Li J C, Jiang Q. Materials Science and Engineering A. 548 (2012) 64.

Google Scholar

[10] Mariela F G, Guillermo B, Hugo O M. Journal of Alloys and Compounds. 534 (2012) 25.

Google Scholar

[11] Wang W R, Wang W L, Wang S C, Tsai Y C, Lai C H, Yeh J W. Intermetallics. 26 (2012) 44.

Google Scholar

[12] Senkov O N, Scott J M, Sendova S V, Miracle D B, Woodward C F. Journal of Alloys and Compounds. 509 (2011) 6043.

Google Scholar

[13] Andrey V K, Dmitry G S, Nikita D S, Gennady A S, Oleg N S. Materials Science and Engineering. 735 (2012)146.

Google Scholar

[14] Tariq N H, Naeem M, Hasan B A, Akhter J I, Siddique M. Journal of Alloys and Compounds. 556 (2013) 79.

Google Scholar

[15] Tong C J, Chen Y L, Yeh J W, Lin S J, Chen S K, Shun T T, Tsau C H, Chang S Y. Metallurgical and Materials Transaction A. 36 (2005) 881.

Google Scholar

[16] Tong C J, Chen M R, Yeh J W, Lin S J, Chen S K, Shun T T, Chang S Y. Metallurgical and Materials Transaction A. 36 (2005) 1263.

Google Scholar

[17] Segall M D, Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. Journal of Physics: Condensed Matter. 14 (2002) 2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[18] Ramer N J, Rappe A M. Journal of Physics and Chemistry of Solids. 61 (2000) 315.

Google Scholar

[19] Bellaiche L, Vanderbilt D. Physical Review B. 61 (2000) 7877.

Google Scholar

[20] Winkler B, Pickard C, Milman V. Chemical Physics Letters. 362 (2002) 266.

Google Scholar

[21] Hamann D R, Schluter M, Chiang C. Physical Reviews Letters. 43 (1979) 1494.

Google Scholar

[22] Payne M C, Teter M P, Allan D C, Arias T A. Reviews of Modern Physics. 64 (1992) 1045.

Google Scholar

[23] Perdew J P, Burke K, Ernzerhof M. Physical Revies Letters. 77 (1996) 3865.

Google Scholar

[24] Leung T C, Chan C T, Harmon B N. Physical Reviews B. 44 (1991) 2923.

Google Scholar

[25] J.E. Garces, G. Bozzolo, Physics Review B. 71 (2005) 134201.

Google Scholar

[26] R.E. Watson, M. Weinert, Physics Review B. 58 (1998) 5981.

Google Scholar

[27] Nye J F, Physical Properties of Crystals (Oxford: Oxford University Press) (1985).

Google Scholar

[28] Anderson O L. Journal of Physics and Chemistry Solids. 24 (1963) 909.

Google Scholar

[29] Pugh S F. Philosophical Magazine Series 7. 45 (1954) 823.

Google Scholar

[30] Frantsevich I N. Voronov F F, Boduta S A. Elastic Constants and Elastic Moduli of metals and Insulators Handbook (Kiev) 1983; p.60.

Google Scholar