BPW91 Method Used in Analyzing Electronic Structures and Magnetic Properties of Nin (2-13) Clusters

Article Preview

Abstract:

The bond length, average binding energy, magnetic moment per atom and the ionic potential of Nin (2-13) clusters were calculated in detail. The variations of magnetic moment per atom and the ionic potential agree well with experimental data. Theoretical results show that BPW91/Lanl2dz method is the best method and basis set for nickel clusters research, respectively. The ground state configurations and electronic structure properties of Nin (2-13) clusters were investigated using the BPW91/LanL2DZ level of DFT method. Through the molecular orbital, we could explain the paramagnetic and diamagnetic to the influence of the magnetic moment after different nickel cluster molecular hybridization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

406-411

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.H. Xu: The Geometries, Electronic of Nickel Clusters and Influence of its complexes at Nickel Clusters. (Ms. D. Dissertation, Shandong Normal University, China. 2005).

Google Scholar

[2] T. Nakazawa, T. Igarashi, T. Tsuru and Y. Kaji: Comp. Mater. Sci., Vol. 46 (2009), P. 367.

Google Scholar

[3] H.D. Zhang: The study of Nin(n=1~13) clusters with first principles. (Ms. D. Dissertation, Nanjing Normal University, China. 2006).

Google Scholar

[4] F.A. Reuse and S.N. Khanna: Chem. Phys., Vol. 234 (1995), P. 77.

Google Scholar

[5] Q.L. Lu, Q.Q. Luo and L.L. Chen: Eur. Phys. J. D, Vol. 61 (2011), P. 389.

Google Scholar

[6] J.C. Pinegar, J.D. Langenberg, C.A. Arrington, E.M. Spain and M.D. Morse: J. Chem. Phys., Vol. 102 (1995), P. 666.

Google Scholar

[7] V.G. Grigoryan and M. Springborg: Phys. Rev. B, Vol. 70 (2004), P. 205415.

Google Scholar

[8] E.K. Parks, L. Zhu, J. Ho and S.J. Riley: J. Chem. Phys., Vol. 100 (1994), P. 7206.

Google Scholar

[9] F.A. Reuse and S.N. Khanna: Chem. Phys. Lett., Vol. 234 (1995), P. 77.

Google Scholar

[10] S.K. Nayak, S.N. Khanna, B.K. Rao and P.J. Jena: Phys. Chem. A, Vol. 101 (1997), P. 1072.

Google Scholar

[11] M.C. Michelini, R. Pis Diez and A.H. Jubert : Int. J. Quant. Chem., Vol. 85 (2001), P. 22.

Google Scholar

[12] S. Bouarab, A. Vega, M.J. L'opez, M.P. Iniguez and J.A. Alonso: Phys. Rev. B, Vol. 55 (1997), P. 13279.

Google Scholar

[13] S.N. Khanna, M. Beltran and P. Jena: Phys. Rev. B, Vol. 64 (2001), P. 235419.

Google Scholar

[14] E. Curotto, A. Matro, D.L. Freeman and J.D. Doll: J. Chem. Phys., Vol. 108 (1998), P. 729.

Google Scholar

[15] Z. Xie, Q.M. Ma, Y. Liu and Y.C. Li : Phys. Lett. A, Vol. 342 (2005), P. 459.

Google Scholar

[16] R.C. Longo and L. Gallego: J. Phys. Rev. B, Vol. 74 (2006), P. 193409.

Google Scholar

[17] F. Aguilera-Granja, A. Garc' a-Fuente and A. Vega: Phys. Rev. B, Vol. 78 (2008), P. 134425.

Google Scholar

[18] R. Singh and P. Kroll: Phys. Rev. B, Vol. 78 (2008), P. 245404.

Google Scholar

[19] F. Aguilera-Granja, J.M. Montejano-Carrizales and R.A. Lo'pez: Phys. Rev. B, Vol. 73 (2006), P. 115422.

Google Scholar

[20] M.B. Knickelbein, S.H. Yang and S.J. Riley: J. Chem. Phys., Vol. 93 (1990), P. 94.

Google Scholar

[21] S.E. Apsel, J.W. Emmert, J. Deng and L.A. Bloomfield: Phys. Rev. Lett., Vol. 76 (1996), P. 144.

Google Scholar

[22] P. Jena, S.K. Nayak, S.N. Khanna and B.K. Rao: J. Phys. Chem. A, Vol. 101 (1997), P. 1072.

Google Scholar