Multiwalled Carbon Nanotubes Covered with Cobalt (II) Phthalocyanine by In Situ Synthesis and its Electrochemical Sensing Performance towards DA and UA

Article Preview

Abstract:

Multiwalled carbon nanotubes (MWCNTs) as an excellent supporter covered with a thick layer of cobalt phthalocyanine (CoPc) were prepared by in-situ synthesis. Platinum particles were adopted to enhance the conductivity of CoPc-MWCNTs. The final nanocomposite Pt-CoPc-MWCNTs was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Strong aromatic π-π stacking between MWCNTs and CoPc made CoPc in-situ forming on MWCNTs. With homogeneous thickness of CoPc covered on the MWCNTs and Pt particles equally distributed, the nanocomposite was used as electrocatalyst. The electrochemical properties of the composite got researched by casting the dispersion of Pt-CoPc-MWCNTs on the glassy carbon electrode. Compared with other modified electrodes, Pt-CoPc-MWCNTs/GC electrode exhibited excellent electrochemical activity towards dopamine (DA) and uric acid (UA). Linear responses for DA and UA were obtained in the ranges of 5 to 170 μM and 5 to 100 μM, and limits of detection were 2.6 and 1.4 μM (S/N = 3), respectively. Simultaneous detection of DA and UA in the presence of ascorbic acid (AA) also displayed selective property, with no interference to each other.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

43-52

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Chen, J. Zhang, W.W. Wei, Z. Jiang and Y. Zhang: European Polymer Journal, Vol. 53 (2014) p.58.

Google Scholar

[2] G. Bottari, G. de la Torre, D M. Guldi and T. Torres: Chemical Reviews, Vol. 110 (2010) No. 11, p.6768.

Google Scholar

[3] S. Mori, M. Nagata, Y. Nakahata, K. Yasuta, R. Goto, M. Kimura and M. Taya: Journal of the American Chemical Society, Vol. 132 (2010) No. 12, p.4054.

DOI: 10.1021/ja9109677

Google Scholar

[4] C.A. Gutierrez, J.F. Silva, F.J. Recio, S. Griveau, F. Bedioui, C.A. Caro, et al.: Electrocatalysis, Vol. 5 (2014) No. 4, p.426.

Google Scholar

[5] Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, et al.: ACS Catalysis, Vol. 3 (2013) No. 6, p.1263.

Google Scholar

[6] A.B. Sorokin: Chemical reviews, Vol. 113 (2013) No. 10, p.8152.

Google Scholar

[7] X. Chen, D. Taguchi, T. Manaka and M. Iwamoto: Organic Electronics, Vol. 14 (2013)p.320.

Google Scholar

[8] M. Raïssi, L. Vignau and B. Ratier: Organic Electronics, Vol. 15 (2014) No. 4, p.913.

Google Scholar

[9] V. Steinmann, T.E. Umbach, M. Schädel, J. Krumrain, M.R. Lenze, H. Bürckstümmer, et al.: Organic Electronics, Vol. 14 (2013) No. 8, p. (2029).

DOI: 10.1016/j.orgel.2013.03.032

Google Scholar

[10] P.N. Mashazi, N. Nombona, M. Muchindu and S. Vilakazi: Journal of Porphyrins and Phthalocyanines, Vol. 16 (2012) No. 07n08, p.741.

DOI: 10.1142/s1088424612300066

Google Scholar

[11] P.N. Mashazi, K.I. Ozoemena and T. Nyokong: Electrochimica Acta, Vol. 52 (2006) No. 1, p.177.

Google Scholar

[12] K.I. Ozoemena and T. Nyokong: Electrochimica Acta, Vol. 51 (2006) No. 24, p.5131.

Google Scholar

[13] K. Wang, J.J. Xu and H.Y. Chen: Biosensors & bioelectronics, Vol. 20 (2005) No. 7, p.1388.

Google Scholar

[14] J. -S. Ye, Y. Wen, W. De Zhang, H.F. Cui, G.Q. Xu and F. -S. Sheu: Electroanalysis, Vol. 17 (2005) No. 1, p.89.

Google Scholar

[15] L. Ding, Q. Xin, X. Zhou, J. Qiao, H. Li and H. Wang: Journal of Applied Electrochemistry, Vol. 43 (2012) No. 1, p.43.

Google Scholar

[16] R.M. Reis, R.B. Valim, R.S. Rocha, A.S. Lima, P.S. Castro, M. Bertotti, et al.: Electrochimica Acta, Vol. 139 (2014), p.1.

Google Scholar

[17] J.F. Silva, J. Pavez, C.P. Silva and J.H. Zagal: Electrochimica Acta, Vol. 114 (2013)p.7.

Google Scholar

[18] T.T. Tasso, T. Furuyama and N. Kobayashi: Inorganic chemistry, Vol. 52 (2013) No. 16, p.9206.

Google Scholar

[19] J.H. Zagal, D.A. Geraldo, M. Sancy and M. Paez: Journal of the Serbian Chemical Society, Vol. 78 (2013) No. 12, p. (2039).

Google Scholar

[20] R. Raghavendra Naik, E. Niranjana, B. E. Kumara Swamy, B. S. Sherigara and H. Jayadevappa: Int J Electrochem Sci, Vol. 3 (2008) p.1574.

Google Scholar

[21] T.N. Joshua Oni: Analytica Chimica Acta, Vol. 434 (2001) No. 1, p.9.

Google Scholar

[22] S.B.A. Barros, A. Rahim, A.A. Tanaka, L.T. Arenas, R. Landers and Y. Gushikem: Electrochimica Acta, Vol. 87 (2013) p.140.

Google Scholar

[23] D. Patrascu, I. David, V. David, C. Mihailciuc, I. Stamatin, J. Ciurea, et al.: Sensors and Actuators B: Chemical, Vol. 156 (2011) No. 2, p.731.

DOI: 10.1016/j.snb.2011.02.027

Google Scholar

[24] A. Rahim, S.B.A. Barros, L.T. Kubota and Y. Gushikem: Electrochimica Acta, Vol. 56 (2011) No. 27, p.10116.

Google Scholar

[25] S. Shahrokhian, M. Ghalkhani and M.K. Amini: Sensors and Actuators B: Chemical, Vol. 137 (2009) No. 2, p.669.

Google Scholar

[26] K. Wang, J.J. Xu, K.S. Tang and H.Y. Chen: Talanta, Vol. 67 (2005) No. 4, p.798.

Google Scholar

[27] X. Zuo, N. Li and H. Zhang: Journal of Materials Science, Vol. 47 (2011) No. 6, p.2731.

Google Scholar

[28] X. Zuo, H. Zhang and N. Li: Sensors and Actuators B: Chemical, Vol. 161 (2012) No. 1, p.1074.

Google Scholar

[29] L. Cui, T. Pu, Y. Liu and X. He: Electrochimica Acta, Vol. 88 (2013) p.559.

Google Scholar

[30] J.H. Zagal, S. Griveau, K.I. Ozoemena, T. Nyokong and F. Bedioui: Journal of Nanoscience and Nanotechnology, Vol. 9 (2009) No. 4, p.2201.

DOI: 10.1166/jnn.2009.se15

Google Scholar

[31] J. Yang, D. Mu, Y. Gao, J. Tan, A. Lu and D. Ma: Journal of Natural Gas Chemistry, Vol. 21 (2012) No. 3, p.265.

Google Scholar

[32] A. Rushi, K. Datta, P. Ghosh, A. Mulchandani and M.D. Shirsat: Materials Letters, Vol. 96 (2013) p.38.

Google Scholar

[33] T. Mugadza and T. Nyokong: Electrochimica Acta, Vol. 55 (2010) No. 26, p.6049.

Google Scholar

[34] T. Mugadza, Y. Arslanoğlu and T. Nyokong: Electrochimica Acta, Vol. 68 (2012)p.44.

Google Scholar

[35] D.A. Geraldo, C.A. Togo, J. Limson and T. Nyokong: Electrochimica Acta, Vol. 53 (2008) No. 27, p.8051.

DOI: 10.1016/j.electacta.2008.05.083

Google Scholar

[36] L. Cui, L. Chen, M. Xu, H. Su and S. Ai: Anal Chim Acta, Vol. 712 (2012) p.64.

Google Scholar

[37] M. Coates and T. Nyokong: Electrochimica Acta, Vol. 91 (2013) p.158.

Google Scholar

[38] V. Mani, A. T. E. Vilian and S.M. Chen: Int J Electrochem Sci, Vol. 7 (2012)p.12774.

Google Scholar

[39] I. Balan, I.G. David, V. David, A. -I. Stoica, C. Mihailciuc, I. Stamatin, et al.: J. Electroanal. Chem., Vol. 654 (2011) No. 1-2, p.8.

Google Scholar

[40] T. Mugadza and T. Nyokong: Synth. Met., Vol. 160 (2010) No. 19-20, p. (2089).

Google Scholar

[41] T. Mugadza and T. Nyokong: J. Colloid Interface Sci., Vol. 354 (2011) No. 2, p.437.

Google Scholar

[42] D.A. Geraldo, C.A. Togo, J. Limson and T. Nyokong: Electrochim. Acta, Vol. 53 (2008) No. 27, p.8051.

Google Scholar

[43] J.H. Zagal, S. Griveau, J.F. Silva, T. Nyokong and F. Bedioui: Coordination Chemistry Reviews, Vol. 254 (2010) No. 23-24, p.2755.

DOI: 10.1016/j.ccr.2010.05.001

Google Scholar

[44] F. Cruz Moraes, M.F. Cabral, S.A.S. Machado and L.H. Mascaro: Electroanalysis, Vol. 20 (2008) No. 5-6, p.851.

Google Scholar