[1]
Alfred Vogel, Vasan Venugopalan. Mechanisms of pulsed laser ablation of biological tissues[J]. Chem. Rev, 2003, 103(2): 577-644.
DOI: 10.1021/cr010379n
Google Scholar
[2]
C P Nolsoe, S Torp-Pedersen, F Burcharth, et al. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: A pilot clinical study[J]. Radiology, 1993, 187(2): 333-337.
DOI: 10.1148/radiology.187.2.8475269
Google Scholar
[3]
Qiwei Tian, Feiran Jiang, Rujia Zou, et al. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25. 7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano, 2011, 5(12): 9761-9771.
DOI: 10.1021/nn203293t
Google Scholar
[4]
Yang, J, Choi, J, Bang, D, et al. Convertible organic nanoparticles for Near-Infrared photo-thermal ablation of cancer cells[J]. Angew. Chem, Int. Ed, 2011, 50, 441-444.
DOI: 10.1002/anie.201005075
Google Scholar
[5]
Whitney, J. R, Sarkar, S, Zhang, J. F, et al. Single walled carbon nanohorns as photothermal cancer agents[J]. Laser, Surg. Med, 2011, 43, 43-51.
DOI: 10.1002/lsm.21025
Google Scholar
[6]
Van De Broek, B, Devoogdt, N, D'hollander, A, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy[J]. ACS Nano, 2011, 5, 4319 -4328.
DOI: 10.1021/nn1023363
Google Scholar
[7]
Tian, Q, Tang, M, Sun, Y, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Adv. Mater, 2011, 23, 3542- 3547.
DOI: 10.1002/adma.201101295
Google Scholar
[8]
Chen, Z. G, Zhang, L. S, Sun, Y. G., el al. 980 nm laser-driven photovoltaic cells based on rare- earth up-converting phosphors for biomedical applications[J]. Adv. Funct. Mater, 2009, 19, 3815-3820.
DOI: 10.1002/adfm.200901630
Google Scholar
[9]
Chen, W. R, Adams, R. L, Carubelli, R, et al. Laser-photosensitizer assisted immunotherapy: A novel modality for cancer treatment[J]. Cancer Lett, 1997, 115, 25-30.
DOI: 10.1016/s0304-3835(97)04707-1
Google Scholar
[10]
Chen, W. R, Adams, R. L, Higgins, A. K, et al. Photothermal effects on murine mammary tumors using indocyanine green and an 808 nm diode laser: An in vivo efficacy study[J]. Cancer Lett, 1996, 98, 169-173.
DOI: 10.1016/s0304-3835(06)80028-5
Google Scholar
[11]
Lim, W. P.; Zhang, Z.; Low, H. Y.; Chin, W. S. Angew. Chem., Int Ed. 2004, 43, 5685.
Google Scholar
[12]
Lou, W. J.; Wang, X. B.; Chen, M.; Liu, W. M.; Hao, J. C. Nanotechnology 2008, 19, 225607.
Google Scholar
[13]
Xiaohong Yang, Dongyong Guo, Ping Chen. Controlled Synthesis and Optical Properties of Ag2S Semiconductor Nanocrystals[J]. Journal of Anhui Institute of Education, 2005, 23(3): 70-72.
Google Scholar
[14]
Xhenguang Wang, Run Liu, Zhude Xu, et al. Preparation of Ag2S and Cu7S4 Hollow Spherical Nanoparticles at Room Temperature[A]. Journal of Inorganic Chemistry, 2008, 24(5): 803-807.
Google Scholar
[15]
Chaoming Wang, Yao Cheng, Yuanhui Zheng, et al. Preparation and Characterization of Ag2S Nanoparticles with Various Morphologies[J]. Electron Microscopy Society, 2006, 25: 61-61.
Google Scholar
[16]
Daxiong Wu, Canying Zhang, Haitao Zhu, et al. Sacrificial template synthesis and photothermal conversion enhancements of hierarchical and hollow CuInS2 microspheres[J]. Physical Chemistry, 2013, 117, 9121-9128.
DOI: 10.1021/jp400806k
Google Scholar