Synthesis of PbS Nanocrystals by Heterogeneous Reaction

Article Preview

Abstract:

PbS nanocrystals was synthesized by a heterogeneous reaction of hydrogen sulfide gas and lead nitrate solution containing EDTA in ethanol. The influenceof initial molar concentration ratio of EDTA/Pb (NO3)2 (CEDTA/CPb (NO3)2), volume ratio of ethanol/water (Vethanol/VH2O), pH value and flux of H2S on the particle size of PbS were investigated. The structure, morphology, particle size, and particle size distribution ranges of PbS were characterized by XRD, FE-SEM, and laser particle size analyzer, respectively. Increasing CEDTA/CPb (NO3)2, Vethanol/VH2O, and pH value, as well as decreasing the flux of H2S decrease the particle size of PbS. PbS nanocrystals have an average particle size of 69 nm, a narrow size distribution, and a quasi-spherical shape when CEDTA/CPb (NO3)2 is 1, Vethanol/VH2O is 1, pH is 3.5, and the flux of H2S is 20 ml/min.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

26-30

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. S. Ghamsari, S. Radiman, M. A. Yarmo, M. A. Abdul-Hamid, A. Bananej, and I. A. Rahman: Mater. Lett. Vol. 65 (2011) No. 9, p.1381.

DOI: 10.1016/j.matlet.2011.02.008

Google Scholar

[2] S. B. Pawar, J. S. Shaikh, R. S. Devan, Y. R. Ma, D. Haranath, and P. N. Bhosale: Appl. Surf. Sci. Vol. 258 (2011) No. 5, p.1869.

Google Scholar

[3] K. G. Syamanta, and O. Eunsoon: Mater. Lett. Vol. 117 (2014) , p.138.

Google Scholar

[4] J. J. Su, and F. M. Gao: Mater. Lett. Vol. 108 (2013) , p.58.

Google Scholar

[5] J. Zhang, F. H. Jiang, and L. D. Zhang: J. Phys. Chem. B Vol. 108 (2004) No. 22, p.7002.

Google Scholar

[6] V. S. Karande, S. H. Mane, V. B. Pujari, and L. P. Deshmukh: Mater. Lett. Vol. 59 No. 2-3 (2005) , p.148.

Google Scholar

[7] S. M. Zhou, X. H. Zhang, X. M. Meng, X. Fan, S. T. Lee, and S. K. Wu: J. Solid State Chem. (2005) No. 178, p.399.

Google Scholar

[8] J. B. Huang, Q. H. Dai, G. L. Guo, and L. L. Gui: Acta Phys. Chim. Sin. Vol. 12 (1996) No. 7, p.621.

Google Scholar

[9] Y. Li, Q. M. Zhang, F. Z. Huang, J. H. Wan, and Z. N. Gu: Chin. J. Inorg. Chem. Vol. 18 (2002) No. 1, p.79.

Google Scholar

[10] D. M. M. Atwa, I. M. Azzouz, and Y. Badr: Appl. Phys. B Vol. 103 (2011) No. 1, p.161.

Google Scholar

[11] P. Balaz, E. Boldizarova, E. Godocikova, and J. Briancin: Mater. Lett. Vol. 57 (2003) No. 9-10, p.1585.

Google Scholar

[12] P. Balaz, E. Godocikova, L. Kriloova, P. lobotka, and E. Gock: Mater. Sci. Eng. A Vol. 386 (2004) No. 1-2, p.442.

Google Scholar

[13] R. C. Jin, G. Chen, Q. Wang, and J. Pei: Mater. Lett. Vol. 65 (2011) No. 8, p.1151.

Google Scholar

[14] D. Z. Qin, L. Zhang, G. X. He, and Q. R. Liu: Mater. Lett. Vol. 66 (2012) No. 1, pp.7-9.

Google Scholar

[15] M. Yousefi, M. Sabet, M. Salavati-Niasari, and H. J. Emadi: Cluster. Sci. Vol. 23 (2012) No. 2, p.511.

Google Scholar

[16] F. E. Kruis, K. Nielsch, H. Fissan, B. Rellinghaus, and E. F. Wassermann: Appl. Phys. Lett Vol. 73 (1998) No. 4, p.547.

Google Scholar