Thermoelectric Properties of Binary-Phased Nanocomposites

Article Preview

Abstract:

In order to increase the electrical conductivity greatly but maintain a large Seebeck coefficient and a low thermal conductivity simultaneously, the binary-phased LaCeFe3CoSb12-Sb nanocomposites composed of LaCeFe3CoSb12 skutterudite nanospheres and semimetal Sb microsized ribbons were fabricated via a hydro/solvo thermal route. The results suggest that the Sb powders result in a disordered structure during a hot-press process at its melting-point temperature and the disordered structure has been partly preserved into the room-temperature materials successfully. The Sb microsized ribbons enhance the electrical conductivity of the binary-phased materials largely, meanwhile the disordered structure increases the Seebeck coefficient obviously even though the thermal conductivity is also increased slightly. Consequently, the figure of merit of the binary-phased materials is improved significantly and the maximum value of 1.54 at 773 K has been realized for the LaCeFe3CoSb15 material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

3-8

Citation:

Online since:

December 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.E. Bell: Sci. Vol. 321 (2008) No. 5895, p.1457.

Google Scholar

[2] A.F. Ioffe: Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Press, England, 1957), p.42.

Google Scholar

[3] G.A. Slack: in CRC Handbook of Thermoelectrics (CRC Press, US, 1995), p.267.

Google Scholar

[4] D.T. Morelli, T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen and C. Uher: Phys. Rev. B Vol. 51 (1995) No. 8, p.9622.

Google Scholar

[5] T. Caillat, A. Borshchevsky and J.P. Fleurial: J. Appl. Phys. Vol. 80 (1996) No. 8, p.4442.

Google Scholar

[6] B.X. Chen, J.H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.P. Fleurial, T. Caillat and A. Borshchevsky: Phys. Rev. B Vol. 55 (1997) No. 2, p.1476.

Google Scholar

[7] G.A. Slack and V. G. Tsoukala: J. Appl. Phys. Vol. 76 (1994) No. 3, p.1665.

Google Scholar

[8] P.X. Lu, Z.G. Shen and X. Hu: Phys. B Vol. 405 (2010) No. 11, p.2589.

Google Scholar

[9] B.C. Sales: Sci. Vol. 295 (2002) No. 5558, p.1248.

Google Scholar

[10] K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis and M.G. Kanatzidis: Sci. Vol. 303 (2004) No. 5659, p.818.

DOI: 10.1126/science.1092963

Google Scholar

[11] B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen and Z.F. Ren: Sci. Vol. 320 (2008) No. 5876, p.634.

DOI: 10.1126/science.1156446

Google Scholar

[12] L.D. Hicks and M.S. Dresselhaus: Phys. Rev. B Vol. 47 (1993) No. 10, p.12727.

Google Scholar

[13] M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe and M. Muhammed: Adv. Funct. Mater. Vol. 14 (2004) No. 12, p.1189.

DOI: 10.1002/adfm.200400109

Google Scholar

[14] X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei and X.Y. Li: Appl. Phys. Lett. Vol. 89 (2006) No. 18, p.092121.

Google Scholar

[15] P.N. Alboni, X. Ji, J. He, N. Gothard and T.M. Tritt: J. Appl. Phys. Vol. 103 (2008) No. 13, p.113707.

Google Scholar

[16] H. Li, X.F. Tang, X.L. Su and Q.J. Zhang: Appl. Phys. Lett. Vol. 92 (2008) No. 20, p.202114.

Google Scholar

[17] W.W. Zhou, J.X. Zhu, D. Li, H.H. Hng, F.Y.C. Boey, J. Ma, H. Zhang and Q.Y. Yan: Adv. Mater. Vol. 21 (2009) No. 31, p.3196.

Google Scholar

[18] Z.M. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller, S.H. Li, M. Toprak and M. Muhammed: J. Appl. Phys. Vol. 101 (2007) No. 4, p.043707.

DOI: 10.1063/1.2561628

Google Scholar

[19] S. Katsuyama, M. Watanabe, M. Kuroki, T. Maehata and M. Ito: J. Appl. Phys. Vol. 93 (2003) No. 5, p.2758.

Google Scholar

[20] S. Katsuyama, Y. Kanayama, M. Ito, K. Majima and H. Nagai: J. Appl. Phys. Vol. 88 (2000) No. 6, p.3484.

Google Scholar

[21] D.J. Bergman and L.G. Felb: J. Appl. Phys. Vol. 85 (1999) No. 12, p.8205.

Google Scholar

[22] P.X. Lu, F. Wu, H.L. Han, Q. Wang, Z.G. Shen and X. Hu: J. Alloys Compd. Vol. 505 (2010) No. 1, p.255.

Google Scholar

[23] G.J. Long, R.P. Hermann, F. Grandjean, E.E. Alp, W. Sturhahn, C.E. Johnson, D.E. Brown, O. Leupold and R. Rüffer: Phys. Rev. B Vol. 71 (2005) No. 8, p. 140302R.

DOI: 10.1103/physrevb.71.140302

Google Scholar

[24] G.S. Nolas, C.A. Kendziora and H. Takizawa: J. Appl. Phys. Vol. 94 (2003) No. 12, p.7440.

Google Scholar

[25] K. Huang: Solid State Physics (People¢s Education Press, China, 1979), p.150.

Google Scholar

[26] B.C. Sales, D. Mandrus and R.K. Williams: Sci. Vol. 272 (1996) No. 5266, p.1325.

Google Scholar

[27] P.G. Klemens: J. Appl. Phys. Vol. 70 (1991) No. 8, p.4322.

Google Scholar

[28] T.J. Zhu, F. Yan, X.B. Zhao, S.N. Zhang, Y. Chen and S.H. Yang: J. Phys. D: Appl. Phys. Vol. 40 (2007) No. 19, p.6094.

Google Scholar

[29] H.J. Goldsmid: Electronic Refrigeration (Pion Press, England, 1986) p.79.

Google Scholar

[30] H.Q. Liu, X.B. Zhao, T.J. Zhu and Y.J. Gu: J. Rare Earths Vol. 30 (2012) No. 5, p.456.

Google Scholar

[31] L. Deng, X.P. Jia, J.M. Qin, Y.C. Wan, J.L. Li and H.A. Ma: Mater. Lett. Vol. 93 (2013) No. 2, p.219.

Google Scholar

[32] Z.Y. Li, M.M. Zou and J.F. Li: J. Alloys Compd. Vol. 549 (2013) No. 2, p.319.

Google Scholar