High-Rate Capability and Excellent Cycling Stability of Li3V2(PO4)3/C Cathode Material Prepared via Sol-Gel Combined with Ball Milling Method

Article Preview

Abstract:

Li3V2(PO4)3/C is prepared by sol-gel combined with ball milling method (SG-BM). The composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), C-S analysis and galvanostatic charge/discharge measurements. The structural characterization shows that the composite prepared by SG-BM is composed of the well crystallized Li3V2(PO4)3 with the space group P21/n and 6.2 wt.% amorphous carbon. SEM and TEM results show that the prepared composite has uniform size distribution with the narrow range of 0.5-1.5μm, and its surface is covered by a smooth and uniform carbon layer with thickness of about 10nm. Galvanostatic charge/discharge measurements indicate that the composite exhibits high rate capability and excellent cycling stability. The prepared composite delivers a discharge capacity of 131.1mAh/g, 128.9mAh/g, 122.6mAh/g and 113.8mAh/g at 0.5C, 1C, and 10C, respectively. The capacity retention of 100% is achieved after 50 cycles at 1C. This outstanding electrochemical capability is attributed to the ultrafine particles with narrow size distribution and the well-covered carbon layer with proper thickness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

837-841

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Huang, S. C. Yin, T. Kerr, N. Taylor ans L. F. Nazar: Advanced Materials, Vol. 14(2002)No. 21, p.1525.

Google Scholar

[2] M. Y. Saïdi, J. Barker, H. Huang, J. L. Swoyer ans G. Adamson: Journal of Power Sources, Vol. 119-121(2003)No. 1, p.266.

Google Scholar

[3] P. Fu, Y. Zhao, Y. Dong, X. An and G. Shen: Journal of Power Sources, Vol. 162(2006)No. 1, p.651.

Google Scholar

[4] J. S. Huang, L. Yang and K. Y. Liu: Materials Letters, Vol. 66(2012)No. 1, p.196.

Google Scholar

[5] C. Sun, S. Rajasekhara, Y. Dong and J. B. Goodenough: ACS Applied Materials & Interfaces, Vol. 3(2011)No. 9, p.3772.

Google Scholar

[6] F. Yu, J. Zhang, Y. Yang and G. Song: Journal of Solid State Electrochemistry, Vol. 14(2009)No. 5, p.883.

Google Scholar

[7] W. Yuan, J. Yan, Z. Tang, O. Sha, J. Wang and W. Mao: Journal of Power Sources, Vol. 201(2012)No. 1, p.301.

Google Scholar

[8] X. Zhang, H. Guo, X. Li, Z. Wang and L. Wu: Electrochim Acta, Vol. 64(2012)No. 1, p.65.

Google Scholar

[9] L. Zhang, H. Xiang, Z. Li and H. Wang: Journal of Power Sources, Vol. 203(2012)No. 1, p.121.

Google Scholar

[10] B. Zhang and J. C. Zheng: Electrochim Acta, Vol. 67(2012) No. 1, p.55.

Google Scholar

[11] W. Yuan, J. Yan, Z. Tang and L. Ma: Ionics, Vol. 18(2011)No. 1-2, p.329.

Google Scholar

[12] M. M. Ren, Z. Zhou, X. P. Gao, W. X. Peng and J. P. Wei: Journal of Physical Chemistry C, Vol. 112(2008)No. 14, p.5689.

Google Scholar

[13] Y. Z. Li, Z. Zhou, M. M. Ren, X. P. Gao and J. Yan: Materials Letters, Vol. 61(2007)No. 23-24, p.4562.

Google Scholar

[14] S. Xun, J. Chong, X. Song, G. Liu and V. S. Battaglia: Journal of Materials Chemistry, Vol. 22(2012)No. 31, p.15775.

Google Scholar

[15] A. Pan, D. Choi, J. G. Zhang, S. Liang, G. Cao and Z. Nie: Journal of Power Sources, Vol. 196(2011)No. 7, p.3646.

Google Scholar

[16] Y. Q. Qiao, X. L. Wang, Y. Zhou, J. Y. Xiang, D. Zhang and S. J. Shi: Electrochim Acta. , Vol. 56(2010)No. 1, p.510.

Google Scholar