Fabrication of Nanopatterns in a-AlOx Thin Films by a Single Laser Pulse

Article Preview

Abstract:

Large area ordered nanopatterning of RF sputter deposited amorphous AlOx films has been carried out. The technique involves UV laser treatment of the samples through LB films of silica nanospheres. The hexagonal, close packed arrangement of the spheres was projected to the surface due to the laser treatment resulting in ordered structure of pits of ~200 nm diameter and 1,3 nm depth. The samples were caracterized by means of AFM and XTEM. The experimental results are in good agreement with the simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

259-264

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. N. Kim, A. Jiao, N. S. Hwang, M. S. Kim, D. H. Kang, D. -H. Kim, K. -Y. Suh, Nanotopography-guided tissue engineering and regenerative medicine, Adv. Drug Deliv. Rev. Vol. 65 Issue 4 (2013) 536–558.

DOI: 10.1016/j.addr.2012.07.014

Google Scholar

[2] B. Bhushan, Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices, Microelectronic Engineering Vol. 84 Issue 3 (2007) 387–412.

DOI: 10.1016/j.mee.2006.10.059

Google Scholar

[3] I. Tamáska, G. Dobrik, P. Nemes-Incze, K. Kertész, E. Horváth, G.I. Márk, T. Jászi, P. Neumann, Z.E. Horváth, L.P. Biró, Bioinspired photonic nanoarchitectures from graphitic thin films, Thin Solid Films Vol. 519 Issue 12 (2011) 4078–4081.

DOI: 10.1016/j.tsf.2011.01.366

Google Scholar

[4] X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. R. Cabarrocas, C. Seassal, Absorbing photonic crystals for silicon thin-film solar cells: Design, fabrication and experimental investigation, Solar Energy Mat. & Solar Cells Vol. 95 (2011).

DOI: 10.1016/j.solmat.2010.11.020

Google Scholar

[5] R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Langmuir Vol. 21 (2005) 956-961.

DOI: 10.1021/la0401011

Google Scholar

[6] A. Sihvola, Metamaterials in electromagnetics, Metamaterials 1 Vol. 1 Issue 1 (2007) 2–11.

Google Scholar

[7] A. Boltasseva, V. M. Shalaev, Fabrication of optical negative-index metamaterials: Recent advances and outlook, Metamaterials 2 Vol. 2 Issue 1 (2008) 1–17.

DOI: 10.1016/j.metmat.2008.03.004

Google Scholar

[8] Q. T. Zhao, F. Klinkhammer, M. Dolle, L. Kappius, S. Mantl, A novel silicide nanopatterning method for the fabrication of ultra-short channel Schottky-tunneling MOSFETs, Microelectronic Engineering Vol. 50 Issues 1–4 (2000) 133–138.

DOI: 10.1016/s0167-9317(99)00273-7

Google Scholar

[9] B. D. Terris and T. Thomson, Nanofabricated and self-assembled magnetic structures as data storage media, J. Phys. D: Appl. Phys. Vol. 38 (2005) R199-R222.

DOI: 10.1088/0022-3727/38/12/r01

Google Scholar

[10] J. -S. Noh, H. Kim, D. W. Chun, W. Y. Jeong, W. Lee, Hyperfine FePt patterned media for terabit data storage, Current Appl. Phys. Vol. 11 Issue 4 Suppl. (2011) S33–S35.

DOI: 10.1016/j.cap.2011.07.006

Google Scholar

[11] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett. 67 (1995) 3114-3116.

DOI: 10.1063/1.114851

Google Scholar

[12] J. A. van Kan, J.L. Sanchez, B. Xu, T. Osipowicz, F. Watt, Micromachining using focused high energy ion beams: Deep Ion Beam Lithography, Nucl. Instr. and Methods in Phys. Research B Vol. 148 Issues 1–4 (1999) 1085-1089.

DOI: 10.1016/s0168-583x(98)90667-x

Google Scholar

[13] C. W. Gwyn, R. Stulen, D. Sweeney, D. Attwood, Extreme ultraviolet lithography, J. Vac. Sci. Technol. B 16 (1998) 3142-3149.

Google Scholar

[14] A. Heuberger, X-ray lithography, Microel. Engineering Vol. 5 Issues 1–4 (1986) 3–38.

Google Scholar

[15] C. L. Haynes, R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B Vol. 105 (2001) 5599-5611.

DOI: 10.1021/jp010657m

Google Scholar

[16] G. M. Whitesides, J. P. Mathias, C.T. Seto, Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science Vol. 254 No. 5036 (1991) 1312-1319.

DOI: 10.1126/science.1962191

Google Scholar

[17] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. of Colloid and Interface Sci. 26 (1968) 62-69.

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar

[18] D. K. Schwartz, Langmuir-Blodgett film structure, Surface Science Reports Vol. 27 Issues 7–8 (1997) 245–334.

DOI: 10.1016/s0167-5729(97)00003-4

Google Scholar

[19] L. Jay Guo, Nanoimprint lithography: methods and material requirements, Adv. Materials Vol. 19 Issue 4 (2007) 495-513.

DOI: 10.1002/adma.200600882

Google Scholar

[20] A. Deák, E. Hild, A. L. Kovács, Z. Hórvölgyi, Contact angle determination of nanoparticles: film balance and scanning angle reflectometry studies, Physical Chemistry Chemical Physics 9 (2007) 6359-6370.

DOI: 10.1039/b702937n

Google Scholar

[21] A. Deák, B. Bancsi, A. L. Tóth, A. L. Kovács, Z. Hórvölgyi, Complex Langmuir–Blodgett Films from Silica Nanoparticles: An Optical Spectroscopy Study, Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 278 Issues 1-3 (2006).

DOI: 10.1016/j.colsurfa.2005.11.070

Google Scholar

[22] http: /www. photond. com/products/crystalwave. htm.

Google Scholar

[23] Z. Xia, L. Riester, B. W. Sheldon, W. A. Curtin, J. Liang, A. Yin and J. M. Xu, Mechanical properties of highly ordered nanoporous anodic alumina membranes, Rev. Adv. Mater. Sci. 6 (2004) 131-139.

Google Scholar