[1]
J. D. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons Inc, (1975).
Google Scholar
[2]
H. K. D. H. Bhadeshia, R. W. K. Honeycombe, Steels Microstructure and Properties, Butterworth-Heinemann, (2006).
Google Scholar
[3]
H. Funakabo, Shape Memory Alloys, Gordon and Breach, (1987).
Google Scholar
[4]
K. Otsuka and C. M. Waymann, Shape Memory Materials, Cambridge University Press, (1998).
Google Scholar
[5]
K. Otsuka and X. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7 (1999) 511-528.
DOI: 10.1016/s0966-9795(98)00070-3
Google Scholar
[6]
V. Brailovski, S. Prokoshkin, P. Terriault and F. Trochou, Shape Memory Alloys: Fundamentals, Modeling and Applications, École de Technologie Supérieure (2003).
Google Scholar
[7]
H. C. Tong, C. M. Wayman, Characteristic temperatures and other properties of thermoelastic martensites, Acta Metallurgica Vol. 22 (1974) 687-696.
DOI: 10.1016/0001-6160(74)90055-8
Google Scholar
[8]
L. C. Brinson, I. Schmidt and R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, Journal of the Mechanics and Physics of Solids 52 (2004).
DOI: 10.1016/j.jmps.2004.01.001
Google Scholar
[9]
X. Jiang, M. Hida, Y. Takemoto, A. Sakakibara, H. Yasuda and H. Mori, In situ observation of stress-induced martensitic transformation and plastic deformation in TiNi alloy", Materials Science and Engineering A238 (1997) 303-308.
DOI: 10.1016/s0921-5093(97)00422-x
Google Scholar
[10]
A. Bluma, T. Höpfner, G. Rudolph, P. Lindner, S. Beutel, B. Hitzmann, T. Scheper, Adaption of in-situ Microscopy for crystallization process, J. Cryt. Growth 311 (2009) 4193-4198.
DOI: 10.1016/j.jcrysgro.2009.06.057
Google Scholar
[11]
M. -Y. Lee, G. M. Parkinson, Growth rates of gibbsite single crystals determined using in situ optical microscopy, J. Cryst Growth 198/199 (1999) 270-274.
DOI: 10.1016/s0022-0248(98)01187-7
Google Scholar
[12]
S. Gangireddy, S. N. Karlsdottir, S. J. Norton, J. C. Tucker, J. W. Halloran, In situ microscopy observation of liquid flow, zirconia growth, and CO bubble formation during high temperature oxidation of zirconium diboride-silicon carbide, J. Eur. Ceram. Soc. 30 (2010).
DOI: 10.1016/j.jeurceramsoc.2010.01.034
Google Scholar
[13]
W. H. Zou, H. Y. Peng, R. Wang, J. Gui, D. Z. Yang, Heating effects on fine structure of a Cu-Al-Ni-Mn-Ti shape memory alloy, Acta Mater. Vol. 43 (1995) 3009-3016.
DOI: 10.1016/0956-7151(95)00016-o
Google Scholar
[14]
Z. G. Wei, H. Y. Peng, D. Z. Yang, C. Y. Chung, J. K. L. Lai, Reverse transformations in CuAlNiMnTi alloy at elevated temperatures, Acta Mater. Vol. 44 (1996) 1189-1199.
DOI: 10.1016/1359-6454(95)00233-2
Google Scholar
[15]
W. Zou, J. Gui, R. Wang, C. Tang, M. Xiang, D. Zhang, Baintic precipitation and its effect on the martensitic transformation in the Cu-Al-Ni-Mn-Ti Shape-Memory alloy, J. Mater. Sci. 32 (1997) 5279-5286.
DOI: 10.1016/1359-6462(96)00156-x
Google Scholar
[16]
E. Hornbogen, V. Mertinger, J. Spielfeld, Ausageing and ausforming of a copper based shape memory alloy with high transformation temperatures, Z. Metallkd. 90 (1999) 5 318-322.
Google Scholar
[17]
L. G. Bujoreanu, S. Stanciu, P. Barsanescu, N. M. Lohan, Study of the transitory formation of α1 bainite, as a precorsor of α-phase in tempered SMAs, A.T.O.M. IV, Vol. 7297 (2009) 72970B 1-6.
DOI: 10.1117/12.823620
Google Scholar
[18]
K. Takezawa, S. Sato, Composition dependence of bainite morphology in Cu-Zn-Al alloys, Mater. Trans. JIM, Vol. 33 (1992) 102-109.
DOI: 10.2320/matertrans1989.33.102
Google Scholar
[19]
K. Marukawa, M. Tabuchi, Analysis of the transformation strain of bainites in Cu-Zn-Al alloys by utilizing interference fringes in TEM images, Mater. Trans. Vol. 44 (2003) 1774-1782.
DOI: 10.2320/matertrans.44.1774
Google Scholar
[20]
M. Benke, V. Mertinger, P. Pekker, Investigation of the bainitic reaction in a CuAlNiMnFe shape memory alloy, J. Min. Metall., Sect. B-Metall., 49 (1), B (2013) 43-47.
DOI: 10.2298/jmmb120801003b
Google Scholar
[21]
M. Benke, V. Mertinger, P. Barkoczy, Investigation of the kinetic of a bainitic reaction upon heating in a CuAlNiMn and a CuAlNiMnFe shape memory alloy, Mat. Sci. For. Vol. 752 (2013) 3-9.
DOI: 10.4028/www.scientific.net/msf.752.3
Google Scholar
[22]
M. Benke, V. Mertinger, In situ optical microscope examinations of the ε↔γ transformations in FeMn(Cr) austenitic steels during thermal cycling, Mat. Sci. For. Vol. 738-739 (2013) 257-261.
DOI: 10.4028/www.scientific.net/msf.738-739.257
Google Scholar
[23]
M. Benke, V. Mertinger, In situ optical microscope study of the thermally induced displacive transformations in CuAlNi based shape memory alloys, submitted to J. Materi. Eng. Perform. (2014).
DOI: 10.1007/s11665-014-1078-5
Google Scholar