In Situ Optical Microscopic Examination Techniques of Thermally Induced Displacive Transformations

Article Preview

Abstract:

The mechanical (reversible deformation, stress-strain diagrams, etc.) and thermal (transformation temperatures, hysteresis) characteristics of the thermoelastic martensitic transformations are in the focus of many manuscripts, however, other aspects of the transformations are given less attention. The relief formation accompanied with displacive transformations ensures the possibility of the direct observation of the mechanism and physical metallurgical characteristics of the martensite↔austenite transformations. The authors of the present manuscript applied the in situ optical microscopy method successfully using self-developed examination techniques and self-made heating stages to characterize the thermally induced displacive transformations in shape memory alloys (SMAs) and TWIP steels.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

279-284

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. D. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons Inc, (1975).

Google Scholar

[2] H. K. D. H. Bhadeshia, R. W. K. Honeycombe, Steels Microstructure and Properties, Butterworth-Heinemann, (2006).

Google Scholar

[3] H. Funakabo, Shape Memory Alloys, Gordon and Breach, (1987).

Google Scholar

[4] K. Otsuka and C. M. Waymann, Shape Memory Materials, Cambridge University Press, (1998).

Google Scholar

[5] K. Otsuka and X. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7 (1999) 511-528.

DOI: 10.1016/s0966-9795(98)00070-3

Google Scholar

[6] V. Brailovski, S. Prokoshkin, P. Terriault and F. Trochou, Shape Memory Alloys: Fundamentals, Modeling and Applications, École de Technologie Supérieure (2003).

Google Scholar

[7] H. C. Tong, C. M. Wayman, Characteristic temperatures and other properties of thermoelastic martensites, Acta Metallurgica Vol. 22 (1974) 687-696.

DOI: 10.1016/0001-6160(74)90055-8

Google Scholar

[8] L. C. Brinson, I. Schmidt and R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, Journal of the Mechanics and Physics of Solids 52 (2004).

DOI: 10.1016/j.jmps.2004.01.001

Google Scholar

[9] X. Jiang, M. Hida, Y. Takemoto, A. Sakakibara, H. Yasuda and H. Mori, In situ observation of stress-induced martensitic transformation and plastic deformation in TiNi alloy", Materials Science and Engineering A238 (1997) 303-308.

DOI: 10.1016/s0921-5093(97)00422-x

Google Scholar

[10] A. Bluma, T. Höpfner, G. Rudolph, P. Lindner, S. Beutel, B. Hitzmann, T. Scheper, Adaption of in-situ Microscopy for crystallization process, J. Cryt. Growth 311 (2009) 4193-4198.

DOI: 10.1016/j.jcrysgro.2009.06.057

Google Scholar

[11] M. -Y. Lee, G. M. Parkinson, Growth rates of gibbsite single crystals determined using in situ optical microscopy, J. Cryst Growth 198/199 (1999) 270-274.

DOI: 10.1016/s0022-0248(98)01187-7

Google Scholar

[12] S. Gangireddy, S. N. Karlsdottir, S. J. Norton, J. C. Tucker, J. W. Halloran, In situ microscopy observation of liquid flow, zirconia growth, and CO bubble formation during high temperature oxidation of zirconium diboride-silicon carbide, J. Eur. Ceram. Soc. 30 (2010).

DOI: 10.1016/j.jeurceramsoc.2010.01.034

Google Scholar

[13] W. H. Zou, H. Y. Peng, R. Wang, J. Gui, D. Z. Yang, Heating effects on fine structure of a Cu-Al-Ni-Mn-Ti shape memory alloy, Acta Mater. Vol. 43 (1995) 3009-3016.

DOI: 10.1016/0956-7151(95)00016-o

Google Scholar

[14] Z. G. Wei, H. Y. Peng, D. Z. Yang, C. Y. Chung, J. K. L. Lai, Reverse transformations in CuAlNiMnTi alloy at elevated temperatures, Acta Mater. Vol. 44 (1996) 1189-1199.

DOI: 10.1016/1359-6454(95)00233-2

Google Scholar

[15] W. Zou, J. Gui, R. Wang, C. Tang, M. Xiang, D. Zhang, Baintic precipitation and its effect on the martensitic transformation in the Cu-Al-Ni-Mn-Ti Shape-Memory alloy, J. Mater. Sci. 32 (1997) 5279-5286.

DOI: 10.1016/1359-6462(96)00156-x

Google Scholar

[16] E. Hornbogen, V. Mertinger, J. Spielfeld, Ausageing and ausforming of a copper based shape memory alloy with high transformation temperatures, Z. Metallkd. 90 (1999) 5 318-322.

Google Scholar

[17] L. G. Bujoreanu, S. Stanciu, P. Barsanescu, N. M. Lohan, Study of the transitory formation of α1 bainite, as a precorsor of α-phase in tempered SMAs, A.T.O.M. IV, Vol. 7297 (2009) 72970B 1-6.

DOI: 10.1117/12.823620

Google Scholar

[18] K. Takezawa, S. Sato, Composition dependence of bainite morphology in Cu-Zn-Al alloys, Mater. Trans. JIM, Vol. 33 (1992) 102-109.

DOI: 10.2320/matertrans1989.33.102

Google Scholar

[19] K. Marukawa, M. Tabuchi, Analysis of the transformation strain of bainites in Cu-Zn-Al alloys by utilizing interference fringes in TEM images, Mater. Trans. Vol. 44 (2003) 1774-1782.

DOI: 10.2320/matertrans.44.1774

Google Scholar

[20] M. Benke, V. Mertinger, P. Pekker, Investigation of the bainitic reaction in a CuAlNiMnFe shape memory alloy, J. Min. Metall., Sect. B-Metall., 49 (1), B (2013) 43-47.

DOI: 10.2298/jmmb120801003b

Google Scholar

[21] M. Benke, V. Mertinger, P. Barkoczy, Investigation of the kinetic of a bainitic reaction upon heating in a CuAlNiMn and a CuAlNiMnFe shape memory alloy, Mat. Sci. For. Vol. 752 (2013) 3-9.

DOI: 10.4028/www.scientific.net/msf.752.3

Google Scholar

[22] M. Benke, V. Mertinger, In situ optical microscope examinations of the ε↔γ transformations in FeMn(Cr) austenitic steels during thermal cycling, Mat. Sci. For. Vol. 738-739 (2013) 257-261.

DOI: 10.4028/www.scientific.net/msf.738-739.257

Google Scholar

[23] M. Benke, V. Mertinger, In situ optical microscope study of the thermally induced displacive transformations in CuAlNi based shape memory alloys, submitted to J. Materi. Eng. Perform. (2014).

DOI: 10.1007/s11665-014-1078-5

Google Scholar