Synthesis and Self-Assembly of Well-Defined pH-Responsive Block Glycopolymers

Article Preview

Abstract:

Two pH-responsive block glycopolymers, poly (ethylene glycol)-b-Poly (2- (diethylamino) ethyl methacrylate-co-2-gluconamidoethyl methacrylate) (PEG113-b-P(DEA55-co-GAMA12)) and poly (ethylene glycol)-b-poly (2-(diethylamino) ethyl methacrylate)-b-poly (2-gluconamido ethyl methacrylate) (PEG113-b-PDEA55-b-PGAMA15), were synthesized via atom transfer radical polymerization (ATRP) by directly or successively polymerization of GAMA and DEA monomers using a PEG-based macroinitiator, respectively, without protecting group chemistry. Those block glycopolymers were confirmed by proton Nuclear Magnetic Resonance (1H NMR) and Gel Permeation Chromatography (GPC), and their self-assembly behaviors were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and Zeta-potential. The results show both synthetic block glycopolymers were dissolved molecularly in aqueous solution at acidic pH (such as pH 3), thus it can reversibly convert to be two-layer micelles comprising DEA and GAMA cores, PEG coronas with size of around 50 nm, or micelles comprising DEA cores, GAMA and PEG outer coronas with bigger size of 70 nm for PEG113-b- P(DEA55-co-GAMA12) and PEG113-b-PDEA55-b-PGAMA15), respectively, at basic condition. Both glycopolymers have the micellization process at middle pH (pH 6-8), but possess different isoelectric points (pIs) (at pH 8.0 and 7.8) for their pH responsive block of PEG113-b-P(DEA55-co-GAMA12) and PEG113-b-PDEA55-b-PGAMA15 with DEA-co-GAMA random structure or DEA chain only, respectively. This study not only reveals the self-assembly of pH responsive block glycopolymers with different architectures by fixing similar degree polymerization (DP) of their blocks, but also provides a tool to investigate pH induced dynamic covalent interaction between glycopolymers and phenylboronic acid derivatives or a light for designing novel drug delivery carriers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

359-366

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Fattal, P. Couvreur, C. Dubernet, Smart, delivery of antisense oligonucleotides by anionic pH-sensitive liposomes, Adv Drug Deliver Rev. 56 (2004) 931-946.

DOI: 10.1016/j.addr.2003.10.037

Google Scholar

[2] A. V. Kabanov, P. Lemieux; S. Vinogradov, V. Alakhov, Pluronic® block copolymers: novel functional molecules for gene therapy, Adv Drug Deliver Rev. 54 (2002) 223-233.

DOI: 10.1016/s0169-409x(02)00018-2

Google Scholar

[3] Rapoport. N, Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery, Prog. Polym. Sci. 32 (2007) 962-990.

DOI: 10.1016/j.progpolymsci.2007.05.009

Google Scholar

[4] J. F. Gohy, Block copolymer Micelles, Adv. Polym. Sci. 190 (2005) 65-136.

Google Scholar

[5] C. A. Fustin, V. Abetz, J. F. Gohy, Triblock terpolymer micelles: A personal outlook, Eur. Phys. J. E. 16 (2005) 291-302.

DOI: 10.1140/epje/i2004-10086-0

Google Scholar

[6] G. Riess, Micellization of block copolymers, Prog. Polym. Sci. 28 (2003) 1107-1170.

Google Scholar

[7] S. Y. Liu, S. P. Armes, Polymeric surfactants for the new millennium: A pH-responsive, zwitterionic, schizophrenic diblock copolymer, Angew. Chem. Int. Ed. 41 (2002) 1413-1416.

DOI: 10.1002/1521-3773(20020415)41:8<1413::aid-anie1413>3.0.co;2-k

Google Scholar

[8] M. Arotcarena, B. Heise, S. Ishaya, A. Laschewsky, Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity, J. Am. Chem. Soc. 124 (2002) 3787-3793.

DOI: 10.1021/ja012167d

Google Scholar

[9] W. Q. Zhang, L. Q. Shi, R. J. Ma, Y. L. An, Y. L. Xu, K. Wu, Micellization of thermo- and pH-responsive triblock copolymer of poly(ethylene {TTP}8201 glycol)-b-poly(4-vinylpyridine)-b-poly (N-isopropylacrylamide), Macromolecules. 38 (2005).

DOI: 10.1021/ma050998o

Google Scholar

[10] W. Z. Yuan, J. C. Zhang, J. R. Wei, C. Zhang, J. Ren, Synthesis and self-assembly of pH-responsive amphiphilic dendritic star-block terpolymer by the combination of ROP, ATRP and click chemistry, Eur. Polym. J. 47 (2011) 949-958.

DOI: 10.1016/j.eurpolymj.2011.01.002

Google Scholar

[11] R. Narain, D. Jhurry, G. Wulff, Synthesis and characterization of polymers containing linear sugar moieties as side groups, Eur. Polym. J. 38 (2002) 273-280.

DOI: 10.1016/s0014-3057(01)00172-0

Google Scholar

[12] L. E. Strong, L. L. Kiessling, A general synthetic route to defined, biologically active multivalent arrays, J. Am. Chem. Soc. 121 (1999) 6193-6196.

DOI: 10.1021/ja990223t

Google Scholar

[13] K. Kobayashi, A. Tshuchida, A new type of artificial glycoconjugate polymer: {TTP}8201 a convenient synthesis and iIts interaction with lectins, Macromolecules. 30 (1997) 2016-(2020).

DOI: 10.1021/ma961681e

Google Scholar

[14] A. Matsumoto, S. Ikeda, A. Harada and K. Kataoka, Glucose-Responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions, Biomacromolecules. 4 (2003) 1410-1416.

DOI: 10.1021/bm034139o

Google Scholar

[15] Q. Q. Guo, Z.M. Wu, X.G. Zhang, L. Sun and C.X. Li, Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH, Soft Matter. 10 (2014) 911-920.

DOI: 10.1039/c3sm52485j

Google Scholar

[16] L. Sun, X. G. Zhang, C. Zheng, Z. M. Wu and C. X. Li, A pH gated, glucose-sensitive nanoparticle based on worm-like mesoporous silica for controlled insulin release, J. Phys. Chem. B. 117 (2013) 3852-3860.

DOI: 10.1021/jp400442x

Google Scholar

[17] C. H. Li, Z. S. Ge, J Fang, S.Y. Liu, Synthesis and self-Assembly of coil−rod double hydrophilic diblock copolymer with dually responsive asymmetric centipede-shaped polymer brush as the rod segment, Macromolecules. 42 (2009) 2916-2924.

DOI: 10.1021/ma900165z

Google Scholar

[18] X. Z. Jiang, S. Z. Luo, S. P. Armes, W. F. Shi, S. Y. Liu, UV Irradiation-Induced shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers, Macromolecules. 39 (2006) 5987-5994.

DOI: 10.1021/ma061386m

Google Scholar

[19] R. Narain, S. P. Armes, Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers, Biomacromolecules. 4 (2003) 1746-1758.

DOI: 10.1021/bm034166e

Google Scholar

[20] A. Sahoo, M. Jassal, A. K. Agrawal, Influence of the copolymer architecture and composition on the response and mechanical properties of pH-sensitive fibers, J. of Appl. Polym. Sci. 105 (2007) 3171-3182.

DOI: 10.1002/app.26223

Google Scholar

[21] Z. Deng; M. Ahmed, R. J. Narain, Novel well-defined glycopolymers synthesized via the reversible addition fragmentation chain transfer process in aqueous media, Polym. Sci: Part A: Polym. Chem. 47 (2009) 614-627.

DOI: 10.1002/pola.23187

Google Scholar

[22] R. Narain, S. P. Armes, Synthesis of low polydispersity, controlled-structure sugar methacrylate polymers under mild conditions without protecting group chemistry, Chem. Commun. 23 (2002) 2776-2777.

DOI: 10.1039/b208654a

Google Scholar

[23] R. Narain, S. P. Armes, Direct synthesis and aqueous solution properties of well-defined cyclic sugar methacrylate polymers, Macromolecules. 36 (2003) 4675-4678.

DOI: 10.1021/ma034321h

Google Scholar

[24] Q. Yang, Zh. K. Xu, Zh. W. Dai, J. L. Wang, M. Ulbricht, Surface modification of polypropylene microporous membranes with a novel glycopolymer, Chem. Mater. 17 (2005) 3050-3058.

DOI: 10.1021/cm048012x

Google Scholar

[25] X. Z. Jiang, G. Y. Zhang, R. Narain, S. Y. Liu, Fabrication of two types of shell-cross-linked micelles with inverted, structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry, Langmuir. 25 (2009).

DOI: 10.1021/la803616d

Google Scholar

[26] Z. Y. Zhu, J. Xu, Y. M. Zhou, X. Z. Jiang, S. P. Armes, S. Y. Liu, Effect of salt on the micellization kinetics of pH-responsive ABC triblock copolymers, Macromolecules, 40 (2007) 6393-6400.

DOI: 10.1021/ma070978h

Google Scholar

[27] Z. C. Deng, S. Q. Li, X. Z. Jiang, R. Narain, Well-Defined galactose-containing multi-functional copolymers and glyconanoparticles for biomolecular recognition processes, Macromolecules. 42 (2009) 6393-6405.

DOI: 10.1021/ma9010457

Google Scholar

[28] F. Li, D. F. Pei, T. F. Shi, G. Zhang, Synthesis and characterization of novel multi-temperature responsive glycopolymers, Chem. J. of Chinese U. 32 (2011) 2243-2245.

Google Scholar

[29] F. Li, D. F. Pei, T. F. Shi, G. Zhang, Synthesis of new pH-responsive glycopolymers by atom transfer radical polymerization, Chem. J. of Chinese U. 32 (2011) 1667-1669.

Google Scholar