Influence of Hot Extrusion on Microstructure and Hardness of SiC Particle Reinforced Al-Zn-Mg-Cu Alloy Matrix Composite

Article Preview

Abstract:

In this paper, the microstructure and mechanical property of the Al-Zn-Mg-Cu aluminum matrix composite reinforced by SiC particles with the contents of 2.5, 4.5, and 6.5wt% through vacuum casting are studied. The homogenization treatment was conducted at 465°C heat insulation for 24h. The purpose of this study is to analyze hot extrusion influence on the microstructure and hardness of the Al-Zn-Mg-Cu aluminum matrix composite. SiCp under pre-processing possesses good wetability with the analysis of Laser Particle Sizer and XRD. Metallurgical microscope, XRD, SEM and EDS is applied to analyze the microstructure of the Al-Zn-Mg-Cu aluminum matrix composite. It has proved that the hot extrusion can effectively improve the homogenization of SiCp and dissolve the second rough phases to reinforce the dispersal of CuAl2 and MgZn2 phase. The hardness of Al/SiCp composite rises as the increase of the SiCp content. It is shown that when the SiCp content is above 5%, its hardness obviously reinforced as well as that of the Al/SiCp composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-125

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Badini, G.M. LaVecchia, P. Fino, T. Valente: Mater Process Technol Vol. 116 (2000), p.289–297.

Google Scholar

[2] J.W. Kaczmar, K. Pietrzak, W. Wlosinski: Journal of Materials Processing Technology Vol. 106 (2000), pp.58-67.

Google Scholar

[3] M.A. Taha: Ma-terials and Design Vol. 6 (2001), p.431–441.

Google Scholar

[4] I. Sahin, A.A. Eker: JMEPEG Vol. 20 (2011), pp.1090-1096.

Google Scholar

[5] H.S. Lee, J.S. Yeo, S.H. Hong, D.J. Yoon, K.H. Na: Journal of Materials Processing Technology Vol. 113 (2001), p.202–208.

Google Scholar

[6] J. Hashim, L. Looney, M.S.J. Hashmi: J. Mater. Process Tech Vol. 92–93 (1999), p.1–7.

Google Scholar

[7] W. Zhou, Z.M. Xu: J. Mater. Process Tech Vol. 63 (1997), p.358–363.

Google Scholar

[8] K. Nogi: Scripta Materialia Vol. 62 (2010), pp.945-948.

Google Scholar

[9] S. Ray, in: Proceedings of the 1995 conference on Inorganic Matrix Composites, edited by Inorganic Matrix Composites, Bangalore, India (1995).

Google Scholar

[10] N. Eustathopoulos, J.C. Joud,P. Desre, J.M. Hicter: J. Mater. Sci Vol. 9 (1974), p.1233.

Google Scholar

[11] F. Delannay, L. Froyen, A. Deruyttere: J. Mater. Sci Vol. 22 (1987), pp.1-16.

Google Scholar

[12] A. Kelly, N. HMacmillan, in: Strong Solid, 3rd Edition, edited by Clarendon press, Oxford, England (1986).

Google Scholar

[13] Y.L. Shen, N. Chawla: Materials Science and Engineering Vol. 297 (2001), pp.44-47.

Google Scholar

[14] M. Taya, S. Hayashi, A.S. Kobayashi: Journal of the American Ceramic Society Vol. 73 (1990), pp.1382-1391.

Google Scholar

[15] Andreas Mortensen, James A. Cornie, Merton C: JOM Vol. 40 (1988), pp.12-19.

Google Scholar

[16] L.M. Tham, M. Gupta, and L. Cheng: Acta Mater Vol. 49 (2001), p.3243–3253.

Google Scholar

[17] D.D. Himbeault, R.A. Varin,K. Piekarsksi: Jouranl of Materials Science Vol. 24 (1989), pp.2746-2750.

Google Scholar

[18] W. Zhou, Z.M. Xu: Journal of Materials Processing Teclmology Vol. 63 (1997), pp.358-363.

Google Scholar

[19] J. Hashim, L. Looney, M.S.J. Hashmi: Journal Materials Processing Technology Vol. 119 (2001), pp.329-335.

Google Scholar

[20] A. Ahmed, A.J. Neely, K.S. Sythesis: Metallurgical and Materials transactions Vol. 41 (2010), pp.1582-1591.

Google Scholar

[21] M. Rajamuthamilselvan, S. Ramanathan: JMEPEG Vol. 21 (2012), pp.191-196.

Google Scholar

[22] Rajesh Kumar Bhushan, Sudhir Kumar: JMEPEG Vol. 20 (2011), pp.317-323.

Google Scholar

[23] Yuan Wuhua, Chen Zhenhua, Xu Haiyang: Trans Vol. 13 (2003), pp.1160-1163.

Google Scholar

[24] J. Hashim, L. Looney, M.A.J. Hashmi: Journal of Materials Processing Technolog Vol. 119 (2011), pp.324-328.

Google Scholar

[25] A. Urena, E.E. Martinez, P. Rodrigo: Composites Science and Technology Vol. 64 (2004), pp.1843-1854.

Google Scholar

[26] Asgeir Bardal: Materials Science and Engineering Vol. 159 (1992), pp.119-125.

Google Scholar

[27] Hongwei Zhang, Lin Geng, Lina Guan: Materials Science and Engineering Vol. 528 (2010), pp.513-518.

Google Scholar

[28] M. Mohammadpour, R. Azari Khosroshahi, R. Taherzadeh Mousavian: Ceramics International Vol. 40 (2014), pp.8323-8332.

DOI: 10.1016/j.ceramint.2014.01.038

Google Scholar

[29] Fan X, Jang D, Meng Q: Trans. Nonferrous Met Vol. 16 (2006), pp.577-581.

Google Scholar

[30] Li Xuechao: Structure and metallographic atlas of aluminium alloy material (Metallurgical Industry Press, Beijing 2010).

Google Scholar

[31] Zeng Yu, Yin Zhimin, Zhu Yuanzhi: Mining and Mentallurgical Engineering Vol. 24 (2004), pp.67-69.

Google Scholar

[32] Liu Hongwei, Chen Kanghua, Liu Yunzhong: Heat Treatment of Metals Vol. 5(2000), pp.16-17.

Google Scholar

[33] National Standard of the People's Republic of China. GB/T 3246. 1-2012 Inspection method for structure of wrought aluminum and aluminum alloy products-part 1: Inspection method for microstructure[S]. Beijing: Standards press of china, (2012).

Google Scholar

[34] Chawla N, Adres D, MitKoy M: Mater Characterization Vol. 47 (2001), pp.129-138.

Google Scholar

[35] Rajesh Kumar Bhushan, Sudhir Kumar: JMEPEG Vol. 20 (2011), pp.317-323.

Google Scholar