Effect of Sr and La on the In Situ A356-TiB2 Composite Fabricated via Remelting and Diluting Approach

Article Preview

Abstract:

In this paper, a remelting and diluting (RD) approach was used to fabricate in situ A356-3wt.%TiB2 composites and the effect of Sr and La on the modification of the composites is investigated in comparison with the conventional flux assisted synthesis (FAS) approach. The microstructure was examined and tensile properties were tested to evaluate the modification efficiency on the composites. The results demonstrated that composites fabricated via RD approach achieve preferable modification by Sr and La due to the higher level of melt cleanliness so as to minimize the Sr-B interaction, in which the eutectic Si which displays a microstructure with globular-fibrous eutectic Si particles. Superior mechanical properties are obtained in the RD composites (especially the elongation) after modified by Sr and La.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Y. M., S.C. Tjong, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R. 29(2000), 49-113.

Google Scholar

[2] L. L. S. Lakshmi, M. Gupta, In situ preparation of TiB2 reinforced Al based composites, J. Mater. Process. Technol. 73(1998), 160-166.

DOI: 10.1016/s0924-0136(97)00225-2

Google Scholar

[3] H. Yi, N. Ma, Y. Zhang, X. Li, H. Wang, Effective elastic moduli of Al–Si composites reinforced in situ with TiB2 particles, Scripta. Mater. 54(2006), 1093-1097.

DOI: 10.1016/j.scriptamat.2005.11.070

Google Scholar

[4] M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, H. Wang, Mechanical properties of in-situ TiB2/A356 composites, Mater. Sci. Eng. A. 590(2014), 246-254.

DOI: 10.1016/j.msea.2013.10.021

Google Scholar

[5] T. H. Ludwig, E. Schonhovd Dæhlen, P. L. Schaffer, L. Arnberg, The effect of Ca and P interaction on the Al–Si eutectic in a hypoeutectic Al–Si alloy, J. Alloys. Compd. 586(2014), 180-190.

DOI: 10.1016/j.jallcom.2013.09.127

Google Scholar

[6] M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, The role of strontium in modifying aluminium–silicon alloys, Acta. Mater. 60(2012), 3920-3928.

DOI: 10.1016/j.actamat.2012.03.031

Google Scholar

[7] A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al–Si Alloys, Mater. Sci. Eng. A. 413-414(2005), 243-248.

DOI: 10.1016/j.msea.2005.09.055

Google Scholar

[8] Y. -C. Tsai, C. -Y. Chou, S. -L. Lee, C. -K. Lin, J. -C. Lin, S. W. Lim, Effect of trace La addition on the microstructures and mechanical properties of A356 (Al–7Si–0. 35Mg) aluminum alloys, J. Alloys. Compd. 487(2009), 157-162.

DOI: 10.1016/j.jallcom.2009.07.183

Google Scholar

[9] T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part II: Enhancing the practical aluminum foundry alloys using the improved Al–5wt%TiB2 master composite upon dilution, Mater. Sci. Eng. A. 605(2014).

DOI: 10.1016/j.msea.2014.03.021

Google Scholar

[10] H. Liao, G. Sun, Mutual poisoning effect between Sr and B in Al–Si casting alloys, Scripta. Mater. 48(2003), 1035-1039.

DOI: 10.1016/s1359-6462(02)00648-6

Google Scholar

[11] A. M. Samuel, H. W. Doty, S. Valtierra, F. H. Samuel, Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys, Mater. Des. 56(2014), 264-273.

DOI: 10.1016/j.matdes.2013.10.029

Google Scholar

[12] L. Lu, A. K. Dahle, Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al–Si foundry alloys, Mater. Sci. Eng. A. 435-436(2006), 288-296.

DOI: 10.1016/j.msea.2006.07.081

Google Scholar

[13] Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part I: An improved halide salt route to fabricate Al–5wt%TiB2 master composite, Mater. Sci. Eng. A. 605(2014).

DOI: 10.1016/j.msea.2014.02.088

Google Scholar

[14] G. Eisaabadi B, M. Tiryakioğlu, P. Davami, S. -K. Kim, Y. O. Yoon, G. -Y. Yeom, N. -S. Kim, The effect of remelting on the melt and casting quality in Al–7%Si–Mg castings, Mater. Sci. Eng. A. 605(2014), 203-209.

DOI: 10.1016/j.msea.2014.03.032

Google Scholar

[15] M. Yıldırım, D. Özyürek, The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys, Mater. Des. 51(2013), 767-774.

DOI: 10.1016/j.matdes.2013.04.089

Google Scholar

[16] M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy, Ultramicroscopy. 132(2013), 216-221.

DOI: 10.1016/j.ultramic.2012.10.006

Google Scholar

[17] T. Wang, Y. Zheng, Z. Chen, Y. Zhao, H. Kang, Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite, Mater. Des. 64(2014), 185-193.

DOI: 10.1016/j.matdes.2014.07.040

Google Scholar