[1]
Z. Y. M., S.C. Tjong, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R. 29(2000), 49-113.
Google Scholar
[2]
L. L. S. Lakshmi, M. Gupta, In situ preparation of TiB2 reinforced Al based composites, J. Mater. Process. Technol. 73(1998), 160-166.
DOI: 10.1016/s0924-0136(97)00225-2
Google Scholar
[3]
H. Yi, N. Ma, Y. Zhang, X. Li, H. Wang, Effective elastic moduli of Al–Si composites reinforced in situ with TiB2 particles, Scripta. Mater. 54(2006), 1093-1097.
DOI: 10.1016/j.scriptamat.2005.11.070
Google Scholar
[4]
M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, H. Wang, Mechanical properties of in-situ TiB2/A356 composites, Mater. Sci. Eng. A. 590(2014), 246-254.
DOI: 10.1016/j.msea.2013.10.021
Google Scholar
[5]
T. H. Ludwig, E. Schonhovd Dæhlen, P. L. Schaffer, L. Arnberg, The effect of Ca and P interaction on the Al–Si eutectic in a hypoeutectic Al–Si alloy, J. Alloys. Compd. 586(2014), 180-190.
DOI: 10.1016/j.jallcom.2013.09.127
Google Scholar
[6]
M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, The role of strontium in modifying aluminium–silicon alloys, Acta. Mater. 60(2012), 3920-3928.
DOI: 10.1016/j.actamat.2012.03.031
Google Scholar
[7]
A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al–Si Alloys, Mater. Sci. Eng. A. 413-414(2005), 243-248.
DOI: 10.1016/j.msea.2005.09.055
Google Scholar
[8]
Y. -C. Tsai, C. -Y. Chou, S. -L. Lee, C. -K. Lin, J. -C. Lin, S. W. Lim, Effect of trace La addition on the microstructures and mechanical properties of A356 (Al–7Si–0. 35Mg) aluminum alloys, J. Alloys. Compd. 487(2009), 157-162.
DOI: 10.1016/j.jallcom.2009.07.183
Google Scholar
[9]
T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part II: Enhancing the practical aluminum foundry alloys using the improved Al–5wt%TiB2 master composite upon dilution, Mater. Sci. Eng. A. 605(2014).
DOI: 10.1016/j.msea.2014.03.021
Google Scholar
[10]
H. Liao, G. Sun, Mutual poisoning effect between Sr and B in Al–Si casting alloys, Scripta. Mater. 48(2003), 1035-1039.
DOI: 10.1016/s1359-6462(02)00648-6
Google Scholar
[11]
A. M. Samuel, H. W. Doty, S. Valtierra, F. H. Samuel, Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys, Mater. Des. 56(2014), 264-273.
DOI: 10.1016/j.matdes.2013.10.029
Google Scholar
[12]
L. Lu, A. K. Dahle, Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al–Si foundry alloys, Mater. Sci. Eng. A. 435-436(2006), 288-296.
DOI: 10.1016/j.msea.2006.07.081
Google Scholar
[13]
Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part I: An improved halide salt route to fabricate Al–5wt%TiB2 master composite, Mater. Sci. Eng. A. 605(2014).
DOI: 10.1016/j.msea.2014.02.088
Google Scholar
[14]
G. Eisaabadi B, M. Tiryakioğlu, P. Davami, S. -K. Kim, Y. O. Yoon, G. -Y. Yeom, N. -S. Kim, The effect of remelting on the melt and casting quality in Al–7%Si–Mg castings, Mater. Sci. Eng. A. 605(2014), 203-209.
DOI: 10.1016/j.msea.2014.03.032
Google Scholar
[15]
M. Yıldırım, D. Özyürek, The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys, Mater. Des. 51(2013), 767-774.
DOI: 10.1016/j.matdes.2013.04.089
Google Scholar
[16]
M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy, Ultramicroscopy. 132(2013), 216-221.
DOI: 10.1016/j.ultramic.2012.10.006
Google Scholar
[17]
T. Wang, Y. Zheng, Z. Chen, Y. Zhao, H. Kang, Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite, Mater. Des. 64(2014), 185-193.
DOI: 10.1016/j.matdes.2014.07.040
Google Scholar