[1]
H. J. Yu,X. G. Zhou, et al., Mechanical properties of 3D KD-1 SiCf/SiC composites with engineered fibre-matrix interfaces, Compos. Sci. Technol. 71(2011) 699-704.
DOI: 10.1016/j.compscitech.2011.01.014
Google Scholar
[2]
H. L. Wang, X. G. Zhou, et al., Microstructure, mechanical properties and reaction mechanism of KD-1 SiCf/SiC composites fabricated by chemical vapor infiltration and vapor silicon infiltration, Mater. Sci. Eng A-struct. Mater. 528(2011).
DOI: 10.1016/j.msea.2010.12.028
Google Scholar
[3]
S Zhao, X. G. Zhou, et al., Effect of heat treatment on microstructure and mechanical properties of PIP-SiC/SiC composites, Mater. Sci. Eng. A. 599(2013) 808-811.
DOI: 10.1016/j.msea.2012.09.027
Google Scholar
[4]
K. Yoshida, Development of silicon carbide fiber-reinforced silicon carbide matrix composites with high performance based on interfacial and microstructure control, Ceram. Soc. Jpn. 118(2010) 82-90.
DOI: 10.2109/jcersj2.118.82
Google Scholar
[5]
R. Naslain, Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview, Compos. Sci. Technol. 64(2004) 155-170.
DOI: 10.1016/s0266-3538(03)00230-6
Google Scholar
[6]
D. Brewer, HSR/EPM combustor materials development program Mater. Sci. Eng. A A261(1999) 284-91.
Google Scholar
[7]
D. Brewer, G. Ojard, M. Gibler, Ceramic matrix composite combustor liner rig test, ASME Turbo Expo 2000, Munich Germany, May 8-11, (2000).
DOI: 10.1115/2000-gt-0670
Google Scholar
[8]
G. S. Corman, K. Luthra, Silicon melt infiltrated ceramic composites (HiperComp), in: Bansal N, (Eds). Hand book of ceramic composites, Kliwer Academic, New York, 2005, pp.99-115.
DOI: 10.1007/0-387-23986-3_5
Google Scholar
[9]
G. N. Morscher, G. Ojard, R. Miller, Y. Gowayerd, U. Santhosh, J. Ahmad, et al., Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: retained properties, damage development, and failure mechanisms, Compos. Sic. Technol. 68(2008).
DOI: 10.1016/j.compscitech.2008.08.028
Google Scholar
[10]
F. Sirieix, P. Goursat, A. Lecomte, A. Dauger: submitted to Composite Science and Technology (1990).
Google Scholar
[11]
D. Suttor, T. Erny, P. Grail, H. Goedeke, T. Hung, Ceramic Transactions, Am. Ceram. Soc. 51 (1995) 211-215.
Google Scholar
[12]
J. R. Walker, R. W. Rice, P. F. Becher, et al., Preparation and properties of monolithic and composite ceramics produced by polymer pyrolysis, Am. Ceram. Soc. Bull. 62(1983) 916-923.
Google Scholar
[13]
H. Yoshida, N. Miyata, M. Sagawa, et al., Preparation of unidirectionally reinforced carbon-SiC composite by repeated infiltration of polycarbosilane, J. Ceram. Soc. Japan 100(1992) 454-458.
DOI: 10.2109/jcersj.100.454
Google Scholar
[14]
D. W. Shin, H. Tanaka, Low-temperature processing of ceramic woven fabric/ceramic matrix composites, J. Am. Ceram. Soc. 77(1994) 97-104.
DOI: 10.1111/j.1151-2916.1994.tb06962.x
Google Scholar
[15]
T. Tanaka, N. Tamari, I. Kondoh, M. Iwasa, Fabrication and mechanical properties of 3-dimensional Tyranno fiber reinforced SiC composites by repeated infiltration of polycarbosilane, J. Ceram. Soc. Japan 104(1996) 545-547.
DOI: 10.2109/jcersj.104.454
Google Scholar
[16]
Kun Liu, Changrui Zhang, Yongdong Xiao, et al., Synthesis of Si3N4-BN composites using borazine as the precursor, Mater. Sci. Eng. A 575(2013) 48-50.
DOI: 10.1016/j.msea.2013.03.048
Google Scholar
[17]
M. Kotani, T. Inoue, et al., Consolidation of polymer-derived SiC matrix composites: processing and microstructure, Compo. Sci. Tch. 62(2002) 2179-2188.
DOI: 10.1016/s0266-3538(02)00151-3
Google Scholar
[18]
Y. Q. Wang, S. Y. Cai, Synthesis and Properies of a Liquid Polycarbosilane Containing Allyl Groups, Silicon Mater 24(2010) 85-88.
Google Scholar
[19]
Y. Q. Wang, Study on liquid SiC Ceramic Precursor with Si-H and –CH=CH2 active group, National University of Defense Technology, Changsha, China, (2010).
Google Scholar