Preparation of Al2O3/Al-Si Composites by In Situ Reaction of Fe2O3+MnO2/Al System

Article Preview

Abstract:

Al2O3 particles reinforced ZL109 composites were prepared by in-situ reaction between Fe2O3+MnO2 and Al in this paper. The influence of ratio of Mn to Fe on the morphologies of Al-Si-Mn-Fe phase and mechanical properties of the composites was investigated. The microstructure was studied by electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The results show that the Al2O3 particles displaced by the Fe2O3+MnO2/Al system are in nanosize. The acicular Al-Si-Fe phases change from acicular to polygonal shape and become smaller with the increase manganese content. The hardness test results have no big difference on the composites. However, the ultimate tensile strength at room temperature and 350°C enhance evidently with the increasing of Mn/Fe.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-53

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.M. Samuel, H.W. Doty, S. Valtierra, Samuel FH, Relationship between tensile and impact properties in Al–Si–Cu–Mg cast alloys and their fracture mechanisms, Mater. Des. 53 (2014) 938-946.

DOI: 10.1016/j.matdes.2013.07.021

Google Scholar

[2] Q.L. Li, T.D. Xia, Y.F. Lan, W.J. Zhao, L. Fan, P.E. Li, Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al–20%Si alloy, J. Alloys Comp. 562 (2013) 25-32.

DOI: 10.1016/j.jallcom.2013.02.016

Google Scholar

[3] H.W. Chang, P.M. Kelly, Y.N. Shi, M.X. Zhang, Effect of eutectic Si on surface nanocrystallization of Al–Si alloys by surface mechanical attrition treatment, Mater. Sci. Eng. A 530 (2011) 304-314.

DOI: 10.1016/j.msea.2011.09.090

Google Scholar

[4] A. Gomy, J. Manickaraj, Z.H. Cai, S. Shankar, Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations and solidification rate, J. Alloys Comp. 577 (2013) 103-124.

DOI: 10.1016/j.jallcom.2013.04.139

Google Scholar

[5] J. Zhang, H.S. Yu, S.B. Kang, J.H. Cho, G.H. Min, Modification of horizontal continuous casting Al–12%Si alloy using FSM master alloy, Mater. Charact. 75 (2013) 44-50.

DOI: 10.1016/j.matchar.2015.02.005

Google Scholar

[6] N.S. Tiedje, J.A. Taylor, M.A. Easton, A new multi-zone model for porosity distribution in Al–Si alloy castings, Acta Mater. 61 (2013) 3037-3049.

DOI: 10.1016/j.actamat.2013.01.064

Google Scholar

[7] A.M.A. Mohamed, F.H. Samuel, S. Alkahtani, Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys, Mater. Sci. Eng. A 543 (2012) 22-34.

DOI: 10.1016/j.msea.2012.02.032

Google Scholar

[8] H.J. Kim, J.M. Lee, Y.H. Cho, S.Y. Sung, B.S. Han, Y.S. Ahn, Microstructures and wear properties of Al–Mg–Si alloy with the addition of ball-milled CoNi powders, Mater. Charact. 70 (2012) 137-144.

DOI: 10.1016/j.matchar.2012.05.011

Google Scholar

[9] D.C. Cao, Y. Liu, X.P. Su, J.H. Wang, H. Tu, J.F. Huang, Diffusion mobilities in the fcc_A1 Cu–Si, Al–Si and Al–Cu–Si alloys, J. Alloys Comp. 551 (2013) 155-163.

DOI: 10.1016/j.jallcom.2012.09.070

Google Scholar

[10] F. Toptan, A.C. Alves, I. Kerti, E. Ariza, L.A. Rocha, Corrosion and tribocorrosion behaviour of Al–Si–Cu–Mg alloy and its composites reinforced with B4C particles in 0. 05 M NaCl solution, Wear 306 (2013) 27-35.

DOI: 10.1016/j.wear.2013.06.026

Google Scholar

[11] K.K. Alaneme, P.A. Olubambi, Corrosion and wear behaviour of rice husk ash alumina reinforced Al–Mg–Si alloy matrix hybrid composites, J. Mater. Res. Tech. 2 (2013) 188-194.

DOI: 10.1016/j.jmrt.2013.02.005

Google Scholar

[12] Q.L. Li, T.D. Xia, Y.F. Lan, Q.J. Zhao, L. Fan, P.F. Li, Effect of in situ γ-Al2O3 particles on the microstructure of hypereutectic Al–20%Si alloy, J. Alloys Comp. 577 (2013) 232-236.

DOI: 10.1016/j.jallcom.2013.04.043

Google Scholar

[13] S. Pournaderi, S. Mahdavi, F. Akhlaghi, Fabrication of Al/Al2O3 composites by in-situ powder metallurgy (IPM), Powder Tech. 229 (2012) 276-284.

DOI: 10.1016/j.powtec.2012.06.056

Google Scholar

[14] Y. Zhou, Z.Y. Yu, N.Q. Zhao, C.S. Shi, E.Z. Liu, X.W. Du, C.N. He, Microstructure and properties of in situ generated MgAl2O4 spinel whisker reinforced aluminum matrix composites, Mater. Des. 46 (2013) 724-730.

DOI: 10.1016/j.matdes.2012.11.022

Google Scholar

[15] S.G. Shabestari, The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys, Mater. Sci. Eng. A 383 (2004) 289-298.

DOI: 10.1016/s0921-5093(04)00832-9

Google Scholar

[16] Y.S. Rao, H. Yan, Z. Hu, Modification of eutectic silicon and β-Al5FeSi phases in as-cast ADC12 alloys by using samarium addition, J. Rare Earths 31 (2013) 916-922.

DOI: 10.1016/s1002-0721(12)60379-2

Google Scholar

[17] T. Gao, Y.Y. Wu, C. Li, X.F. Liu, Morphologies and growth mechanisms of α-Al(FeMn)Si in Al–Si–Fe–Mn alloy, Mater. Lett. 110 (2013) 191-194.

DOI: 10.1016/j.matlet.2013.08.039

Google Scholar

[18] R. Taghiabadi, H.M. Ghasemi, S.G. Shabestari, Effect of iron-rich intermetallics on the sliding wear behavior of Al–Si alloys, Mater. Sci. Eng. A 490 (2008) 162-170.

DOI: 10.1016/j.msea.2008.01.001

Google Scholar

[19] M.A. Moustafa, Modification of β-Al5FeSi Compound in Recycled Al-Si-Fe Cast Alloy by Using Sr, Mg and Cr Additions, J. Mater. Sci. Technol. 209 (2009) 605-610.

Google Scholar

[20] L. Zhang, W.L. Jiao, H.J. Yu, G.C. Yao, Influence of manganese and preheat treatment onmicrostructure and mechanical properties of Al-Si alloy, Chinese J. Nonfer. Metal. 15 (2005) 368-373.

Google Scholar

[21] X.Z. Lin, F. Yin, B.D. Sun, Influence of Fe on the Properties of Al2Si Alloy and Methods of Neutral izing the Effect of Fe, Foundry Tech. 5 (1999) 29-32.

Google Scholar