Effect of Yttrium Content on the Ultra-High Cycle Fatigue Behavior of Mg-Zn-Y-Zr Alloys

Article Preview

Abstract:

In the super-long life regime, the fatigue behavior of as-extruded Mg-6wt%Zn-xY-0.8wt%Zr Mg alloys with Y content of 0, 1, 2 and 3 wt% have been investigated, respectively. The result indicated that for all measured S-N curves, a plateau existed in the regime of 5×106-108 cyc, and then the fatigue strength gradually decreased between 108 and 109 cycles. Therefore, only fatigue strength corresponding to 109 cycles can be determined. Compared with other alloys, the alloy with Y content of 2 wt% has the highest fatigue strength and its value is 105 MPa. SEM observations to fracture surfaces revealed that for all alloys, the fatigue crack mostly initiated at the surface or subsurface of samples failed within 106-109 cycles. Further observation indicated that the crack initiation was related with activated slip bands instead of phase particles and activated twins. Based on the measured results and Murakami equation, it demonstrates that the fatigue strength of alloys is more dependent on the hardness values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-336

Citation:

Online since:

April 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Mayer, M. Papakyriacou, Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys, Int. J. Fatigue. 25 (2003) 245-256.

DOI: 10.1016/s0142-1123(02)00054-3

Google Scholar

[2] G. Eisenmeier, B. Holzwarth, H. Mughrabi, Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91, Mater. Sci. Eng. A. 321 (2001) 578-582.

DOI: 10.1016/s0921-5093(01)01105-4

Google Scholar

[3] K. Tokaji, M. Kamakura, Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy, Int. J. Fatigue. 26 (2004) 1217-1224.

DOI: 10.1016/j.ijfatigue.2004.03.015

Google Scholar

[4] Z.B. Sajuri, Y. Miyashita, Y. Hosokai, Y.J. Mutoh, Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys, Int. J. Mech. Sci. 48 (2006) 198-209.

DOI: 10.1016/j.ijmecsci.2005.09.003

Google Scholar

[5] T.S. Shih, W.S. Liu, Y.J. Chen, Fatigue of as-extruded AZ61A magnesium alloy, Mater. Sci. Eng. A. 325 (2002) 152-162.

DOI: 10.1016/s0921-5093(01)01411-3

Google Scholar

[6] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime, Scripta. Mater. 56 (2007) 1-4.

DOI: 10.1016/j.scriptamat.2006.09.006

Google Scholar

[7] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime, J. Alloys. Comps. 454 (2008) 123-128.

DOI: 10.1016/j.jallcom.2006.12.043

Google Scholar

[8] F. Yang, S.M. Yin, S.X. Li, Z.F. Zhang, Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime, Mater. Sci. Eng. A. 491 (2008) 131-136.

DOI: 10.1016/j.msea.2008.02.003

Google Scholar

[9] Z.P. Luo, D.Y. Song, S.Q. Zhang, Stengthening effects of rare-earths on wrought Mg-Zn-Zr-RE alloys, J. Alloy. Compd. 230 (1995) 109-114.

DOI: 10.1016/0925-8388(95)01893-x

Google Scholar

[10] Z.P. Luo, D.Y. Song, S.Q. Zhang, Effect of heat-treatment on the stability of the quasi-crystal in a Mg-Zn-Zr-Y alloy, Mater. Lett. 21 (1994) 85-88.

Google Scholar

[11] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Effect of microstructure and texture on the mechanical properties of the as-extruded Mg-Zn-Y-Zr alloys, Mater. Sci. Eng. A. 443 (2007) 248-256.

DOI: 10.1016/j.msea.2006.08.037

Google Scholar

[12] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy, Acta. Mater. 56 (2008) 985-994.

DOI: 10.1016/j.actamat.2007.10.057

Google Scholar

[13] Y. Murakami, M. Endo, Proc. The Behavior of Short Fatigue Cracks, EGF, Mech Engng Pub, London, (1986).

Google Scholar