[1]
C.J. Tong, Y.L. Chen, J.W. Yeh. Microstructure Characterization of AlxCoCrCuFeNi high-entropy alloy system with multi-principal elements, Metall. Mater. Trans. A. 36(2005) 881-893.
DOI: 10.1007/s11661-005-0283-0
Google Scholar
[2]
W.R. Wang, W.L. Wang., J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26(2012) 44-51.
DOI: 10.1016/j.intermet.2012.03.005
Google Scholar
[3]
T.T. Shun, L.Y. Chang, M.H. Shiu. Age -hardening of the CoCrFeNiMo0. 85 high-entropy alloy, Meter. Charact. 81(2013) 92-96.
DOI: 10.1016/j.matchar.2013.04.012
Google Scholar
[4]
G.E. Totten, L. Xie, K. Funatani. Hand book of mechanical alloy design, . New York: Marcel Dekker Inc (2004).
Google Scholar
[5]
J.W. Yeh, S.K. Chen, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6(2004) 299–303.
DOI: 10.1002/adem.200300567
Google Scholar
[6]
J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim-Sci. Mat. 31(2006) 633–648.
DOI: 10.3166/acsm.31.633-648
Google Scholar
[7]
W.P. Chen, Z.Q. Fu, S.C. Fang, H.Q. Xiao, D.Z. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0. 3Al0. 7 high entropy alloy, Mater. Des. 51(2013) 854–60.
DOI: 10.1016/j.matdes.2013.04.061
Google Scholar
[8]
J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Mater. Sci. Eng. A, 527(2010) 697–9.
DOI: 10.1016/j.msea.2010.07.028
Google Scholar
[9]
S.G. Ma, Y. Zhang, Effect of N b addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater . Sci. Eng. A. 532(2012) 48–6.
Google Scholar
[10]
Y.Y. Du, Y.P. Lu, T.J. Li, T.M. Wang, G. L Zhang, Effect of aluminium content of AlxCrFe1. 5Ni0. 5 multiprincipal alloys on microstructure and alloy hardness, Mater. Res. Innovations. 15(2011) 107-10.
DOI: 10.1179/143307511x12998222918796
Google Scholar
[11]
Y.Y. Du, Y.P. Lu, T.M. Wang, T.J. Li, J.L. Zhang, Effect of electromagnetic stirring on microstructure and properties of Al0. 5CoCrCuFeNi alloy, Procedia. Eng. 63(2012), 1129-34.
DOI: 10.1016/j.proeng.2011.12.562
Google Scholar
[12]
M.H. Tsai, J.W. Yeh. A Critical Review, Materials Research Letters, Mater. Res. Letters, 2(2014) 107-123.
Google Scholar
[13]
Y. Zhang, T.T. Zuo, Z. Tang, Microstructure and properties of high-entropy alloys, Prog. Mater. SCI. 61(2014) 1-93.
Google Scholar
[14]
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P. K Liaw, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics. 18(2010) 1758-65.
DOI: 10.1016/j.intermet.2011.01.004
Google Scholar
[15]
O.N. Senkov, C.F. Woodward. Microstructure and properties of a refractoryNbCrMo0. 5Ta0. 5Zr alloy. Mate. Sci. Eng. A. 529(2011) 311-20.
Google Scholar
[16]
S. Guo, C. Ng, J. Lu, C.T. Liu. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Progress in Natural Science: Material International 21(2011) 433-446.
DOI: 10.1016/s1002-0071(12)60080-x
Google Scholar
[17]
S. Guo, Q. Hu, C. Ng, C.T. Liu. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics. 41(2013) 96-103.
DOI: 10.1016/j.intermet.2013.05.002
Google Scholar