[1]
Duhl, M. Gel& DN, and A. F. Giamei. The development of single crystal superalloy turbine blades., Superalloys 1980 (1980).
DOI: 10.7449/1980/superalloys_1980_205_214
Google Scholar
[2]
Leverant, G. R., B. H. Kear, and J. M. Oblak. Creep of precipitation-hardened nickel-base alloy single crystals at high temperatures., Metallurgical Transactions 4. 1 (1973): 355-362.
DOI: 10.1007/bf02649637
Google Scholar
[3]
Reed, R. C., D. C. Cox, and C. M. F. Rae. Damage accumulation during creep deformation of a single crystal superalloy at 1150 C., Materials Science and Engineering: A 448. 1 (2007): 88-96.
DOI: 10.1016/j.msea.2006.11.101
Google Scholar
[4]
Mirkin, I. L., and O. D. Kancheev. Relationship between heat resistance and difference in lattice spacings of phases in precipitation-hardening alloys., Metal Science and Heat Treatment 9. 1 (1967): 10-13.
DOI: 10.1007/bf00657546
Google Scholar
[5]
Feller-Kniepmeier M, Link T. Correlation of microstructure and creep stages in the< 100>oriented superalloy SRR 99 at 1253K,. Metallurgical Transactions: A 20. 1(1989): 1233-1238.
DOI: 10.1007/bf02647405
Google Scholar
[6]
Yu, X. H., et al. Design of quaternary Ir-Nb-Ni-Al refractory superalloys., Metallurgical and materials transactions A 31. 1 (2000): 173-178.
DOI: 10.1007/s11661-000-0063-9
Google Scholar
[7]
Shui, Li, et al. Influence of pre-compression on microstructure and creep characteristic of a single crystal nickel-base superalloy., Materials Science and Engineering: A 418. 1 (2006): 229-235.
DOI: 10.1016/j.msea.2005.11.028
Google Scholar
[8]
Drew, G. L., et al. Single crystal superalloys; the transition from primary to secondary creep., Superalloys 2004 (2004).
DOI: 10.7449/2004/superalloys_2004_127_136
Google Scholar
[9]
Nystrom J.D., Pollck T.M., Murphy W.H., and Garg A. Discontinuous cellular precipitation in a high-refractory nickel-based superalloy., Metall Mater Trans: A28(1997): 2443.
DOI: 10.1007/s11661-997-0001-1
Google Scholar
[10]
Nabarro, Frank Reginald Nunes, and F. De Villiers. Physics of creep and creep-resistant alloys. CRC press, (1995).
Google Scholar
[11]
McLean, Malcolm. Directionally solidified materials for high temperature service., (1988).
Google Scholar
[12]
Kamaraj, M. Rafting in single crystal nickel-base superalloys—An overview., Sadhana 28. 1-2 (2003): 115-128.
DOI: 10.1007/bf02717129
Google Scholar
[13]
Kostka, A., et al. L12-phase cutting during high temperature and low stress creep of a Re-containing Ni-base single crystal superalloy., Journal of materials science 42. 11 (2007): 3951-3957.
DOI: 10.1007/s10853-006-0166-9
Google Scholar
[14]
Carry, C., and J. L. Strudel. Apparent and effective creep parameters in single crystals of a nickel base superalloy—I Incubation period., ActaMetallurgica 25. 7 (1977): 767-777.
DOI: 10.1016/0001-6160(77)90092-x
Google Scholar
[15]
Wilson, B. C., J. A. Hickman, and G. E. Fuchs. The effect of solution heat treatment on a single-crystal Ni-based superalloy., JOM 55. 3 (2003): 35-40.
DOI: 10.1007/s11837-003-0158-z
Google Scholar
[16]
Pollock, T. M., and R. D. Field. Dislocations and high-temperature plastic deformation of superalloy single crystals., Dislocations in solids 11 (2002): 547-618.
DOI: 10.1016/s1572-4859(02)80014-6
Google Scholar
[17]
Carroll, L. J., et al. High refractory, low misfit Ru-containing single-crystal superalloys., Metallurgical and Materials Transactions A 37. 10 (2006): 2927-2938.
DOI: 10.1007/s11661-006-0174-z
Google Scholar
[18]
Gabb, T. P., et al. The role of interfacial dislocation networks in high temperature creep of superalloys., Materials Science and Engineering: A 118 (1989): 59-69.
DOI: 10.1016/0921-5093(89)90058-0
Google Scholar
[19]
Zhang, J. X., et al. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy., Metallurgical and Materials Transactions A 33. 12 (2002): 3741-3746.
DOI: 10.1007/s11661-002-0246-7
Google Scholar
[20]
Nathal, M. V., R. A. MacKay, and R. V. Miner. Influence of precipitate morphology on intermediate temperature creep properties of a nickel-base superalloy single crystal., Metallurgical Transactions A 20. 1 (1989): 133-141.
DOI: 10.1007/bf02647500
Google Scholar