[1]
L. Huang, X.F. Sun, H.R. Guan, Z.Q. Hu, Improvement of the oxidation resistance of NiCrAlY coatings by the addition of rhenium, Surf. Coat. Technol. 201 (2006) 1421-1425.
DOI: 10.1016/j.surfcoat.2006.02.009
Google Scholar
[2]
S. Shankar, D.E. Koenig, L.E. Dardi, Vacuum plasma sprayed metallic coatings, J. Met. 33 (1981) 13-20.
DOI: 10.1007/bf03339507
Google Scholar
[3]
F.S. Liao, C.W. Hsu, D. Gan, P. Shen, S.Z. Liao, Microstructures of first-stage aluminized coatings on nickel-based superalloys, Mater. Sci. Eng. A. 125 (1990) 215-221.
DOI: 10.1016/0921-5093(90)90171-x
Google Scholar
[4]
A.B. Smith, A. Kempster, J. Smith, Vapour aluminide coating of internal cooling channels, in turbine blades and vanes, Surf. Coat. Technol. 121 (1999) 112-117.
DOI: 10.1016/s0257-8972(99)00346-1
Google Scholar
[5]
G.R. Krishna, D.K. Das, V. Singh, S.V. Joshi, Role of Pt content in the microstructural development and oxidation performance of Pt-aluminide coatings produced using a high-activity aluminizing process, Mater. Sci. Eng. A. 251 (1998) 40-47.
DOI: 10.1016/s0921-5093(98)00655-8
Google Scholar
[6]
N. Czech, F. Schmitz, W. Stamm, Improvement of MCrA1Y coatings by addition of rhenium, Surf. Coat. Technol. 68 (1994) 17-21.
DOI: 10.1016/0257-8972(94)90131-7
Google Scholar
[7]
C. Leyens, I.G. Wright, B.A. Pint, Effect of Experimental procedures on the cyclic, hot-corrosion behavior of NiCoCrAlY-type bondcoat alloys, Oxid. Met. 54 (2000) 255-276.
Google Scholar
[8]
A. Hesnawi, H.F. Li, Z.H. Zhou, S.K. Gong, H.B. Xu, Isothermal oxidation behaviour of EB-PVD MCrAlY bond coat, Vacuum . 81 (2007) 947-952.
DOI: 10.1016/j.vacuum.2006.03.024
Google Scholar
[9]
J.A. Haynes, M.K. Ferber, W.D. Porter, E.D. Rigney, Characterization of alumina scales formed during isothermal and cyclic oxidation of plasma-sprayed TBC systems at 1150°C, Oxid. Met. 52 (1999) 31-76.
Google Scholar
[10]
C. Leyens, U. Schulz, B.A. Pint, I.G. Wright, Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions, Surf. Coat. Technol. 121 (1999).
DOI: 10.1016/s0257-8972(99)00343-6
Google Scholar
[11]
M.J. Pomeroy, Coatings for gas turbine materials and long term stability issues, Mater. Des. 26 (2005) 223-231.
DOI: 10.1016/j.matdes.2004.02.005
Google Scholar
[12]
J.H. Sun, E. Chang, B.C. Wu, C.H. Tsai, The properties and performance of (ZrO2-8wt. %Y2O3)/(chemically vapour-deposited Al2O3)/(Ni-22wt. %Cr-10wt. %Al-lwt. %Y) thermal barrier coatings, Surf. Coat. Technol. 58 (1993) 93-99.
DOI: 10.1016/0257-8972(93)90179-r
Google Scholar
[13]
R. Varen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stover, Overview on advanced thermal barrier coatings, Surf. Coat. Technol. 205 (2010) 938-942.
DOI: 10.1016/j.surfcoat.2010.08.151
Google Scholar
[14]
L. Huang, X.F. Sun, H.R. Guan, Z.Q. Hu, Oxidation behavior of a single-crystal Ni-base superalloy in air at 900, 1000 and 1100°C, Oxid. Met. 65 (2006) 207-222.
DOI: 10.1007/s11085-006-9016-z
Google Scholar
[15]
W.S. Walston, J.C. Schaefter, W.H. Murphy, R.D. Kissinger, A new type of microstructural instability in superalloys-SRZ , Superalloys, TMS. (1996) 9-18.
DOI: 10.7449/1996/superalloys_1996_9_18
Google Scholar
[16]
F. Jamarani, M. Korotkin, Compositionally graded thermal barrier coatings for high temperature aero gas turbine components, Surf. Coat Technol. 54/55 (1992) 58-63.
DOI: 10.1016/0257-8972(92)90140-6
Google Scholar
[17]
K.S. Fancey, A. Matthews, Ionization assisted physical vapor deposition of zirconia thermal barrier coatings, Journal of Vacuum Science Technology A. 4 (1986) 2656-2666.
DOI: 10.1116/1.573699
Google Scholar
[18]
H.B. Xu, H.B. Guo, Development of gradient thermal barrier coatings and their hot-fatigue behavior, Surf. Coat. Technol. 130 (2000) 133-139.
DOI: 10.1016/s0257-8972(00)00695-2
Google Scholar
[19]
A.G. Evans, D.R. Mumm, J.W. Hutchinson, Me-chanisms controlling the durability of thermal barrier coatings, Progress in Materials Science, 46 (2001) 505-553.
DOI: 10.1016/s0079-6425(00)00020-7
Google Scholar
[20]
A. Rabiei, A.G. Evans, Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings, Acta Mater. 48 (2000) 3963-3976.
DOI: 10.1016/s1359-6454(00)00171-3
Google Scholar