Microstructures and Mechanical Properties of Extruded High-Purity Magnesium

Article Preview

Abstract:

The microstructure and mechanical properties of the high-purity magnesium (99.99wt.% Mg) extruded by single direct extrusion experiment were investigated. For the extrusion speed of 0.2mm/s, the microstructure of extruded Mg rods was composed of equiaxed fine dynamical recrystallized (DRXed) grains and some elongated coarse un-DRXed grains. The yield strength (YS) and the elongation of the extruded bars were 105.3MPa and 46.7% respectively. In the case of extrusion speed of 4.0mm/s, the DRXed grains were remarkably coarsened and the elongated coarse un-DRXed grains vanished, meanwhile lots of twins occurred and the intensity of basal-plane texture increased a little. With the extrusion speed being raised from 0.2mm/s to 4.0mm/s, the YS and the elongation decreased to 60.5MPa and 22.1% respectively, but the ultimate tensile strength (UTS) was improved from 154.7MPa to 178.8MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

439-445

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Witte, Introduction to biodegradable implants based on metals, in: M.O. Pekguleryuz, K.U. Kainer, A.A. Kaya (Eds. ), Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publishing Limited, Cambridge, UK, 2013, pp.342-349.

DOI: 10.1533/9780857097293

Google Scholar

[2] E.L. Zhang, L. Yang, Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application, Mater. Sci. Eng. A 497 (2008) 111-118.

DOI: 10.1016/j.msea.2008.06.019

Google Scholar

[3] X.N. Gu, W.R. Zhou, Y.F. Zhen, Y. Liu, Y.X. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material, Mater. Lett. 64 (2010) 1871-1874.

DOI: 10.1016/j.matlet.2010.06.015

Google Scholar

[4] T. Okmua, Magnesium and bone strength, Nutrition. 17 (2001) 679-680.

Google Scholar

[5] K. Lietaert, L. Weber, J.V. Humbeeck, A. Mortensen, J. Luyten, J. Schrooten, Open cellular magnesium alloys for biodegradable orthopaedic implants, J. Magn. Alloys. 1 (2013) 303-311.

DOI: 10.1016/j.jma.2013.11.004

Google Scholar

[6] B.Q. Shi, R.S. Chen, W. Ke, Influence of grain size on the tensile ductility and deformation modes of rolled Mg-1. 02 wt. % Zn alloy, J. Magn. Alloys. 1 (2013) 210-216.

DOI: 10.1016/j.jma.2013.09.001

Google Scholar

[7] H.K. Kim, Y.I. Lee, C.S. Chung, Fatigue properties of a fine-grained magnesium alloy produced by equal channel angular pressing, Scripta Mater. 52 (2005) 473-477.

DOI: 10.1016/j.scriptamat.2004.11.007

Google Scholar

[8] A. Yamashita, A. Horita, T.G. Langdon, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng. A. 300 (2001) 142-147.

DOI: 10.1016/s0921-5093(00)01660-9

Google Scholar

[9] Z.B. Sajuri, Y. Miyashita, Y. Hosokai, Y. Mutoh, Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys, Int. J. Mech. Sci. 48 (2006) 198-209.

DOI: 10.1016/j.ijmecsci.2005.09.003

Google Scholar

[10] H.W. Dong, F.S. Pan, B. Jiang, Y. Zeng, Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio, Mater. Design. 57 (2014) 121-127.

DOI: 10.1016/j.matdes.2013.12.055

Google Scholar

[11] Y.B. He, Q.L. Pan, Y.J. Qin, X.Y. Liu, W.B. Li, J. Microstructure and mechanical properties of ultrafine grain ZK60 alloy processed by equal channel angular pressing, Mater. Sci. 45 (2010) 1655-1662.

DOI: 10.1007/s10853-009-4143-y

Google Scholar

[12] N.B. Tork, N. Pardisn, R. Ebrahimi, Investigation on the feasibility of room temperature plastic deformation of pure magnesium by simple shear extrusion process, Mater. Sci. Eng. A. 560 (2013) 34-39.

DOI: 10.1016/j.msea.2012.08.085

Google Scholar

[13] J. Zhang, W.G. Li, Z.X. Guo, Static recrystallization and grain growth during annealing of an extruded Mg-Zn-Zr magnesium alloy, J. Magn. Alloys. 1 (2013) 31-38.

DOI: 10.1016/j.jma.2013.02.012

Google Scholar

[14] J. Bohlen, S.B. Yi, J. Swiostek, D. Letzig, H.G. Brokmeier, K.U. Kainer, Microstructure and texture development during hydrostatic, Scripta Mater. 53 (2005) 259-264.

DOI: 10.1016/j.scriptamat.2005.03.036

Google Scholar

[15] M. Efe, W. Moscoso, K.P. Trumble, W.D. Compton, S. Chandrasekar, Mechanics of large strain extrusion machining and application to deformation processing of magnesium alloys, Acta Mater. 60 (2012) 2031-(2042).

DOI: 10.1016/j.actamat.2012.01.018

Google Scholar

[16] S. H. Park, B.S. You, R.K. Mishra, A.K. Sachdev, Effects of extrusion parameters on the microstructure and mechanical properties of Mg-Zn-(Mn)-Ce/Gd alloys, Mater. Sci. Eng. A. 598 (2014) 396-406.

DOI: 10.1016/j.msea.2014.01.051

Google Scholar

[17] Y. Uematsu, K. Tokaji, M. Kamakura, K. Uchida, H. Shibata, N. Bekku, Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys, Mater. Sci. Eng. A. 434 (2006) 131-140.

DOI: 10.1016/j.msea.2006.06.117

Google Scholar

[18] M.R. Barnett, Recrystallization During and Following Hot Working of Magnesium Alloy AZ31, Mater. Sci. Forum. 419-422 (2003) 503-508.

DOI: 10.4028/www.scientific.net/msf.419-422.503

Google Scholar

[19] Q.S. Yang, B. Jiang, J.J. He, B. Song, W.J. Liu, H.W. Dong, F.S. Pan, Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process, Mater. Sci. Eng. A http: /dx. doi. org/10. 1016/j. msea. 2014. 06. 045.

DOI: 10.1016/j.msea.2014.06.045

Google Scholar

[20] H. Yu, S.H. Park, B.S. You, Y.M. Kim, H.S. Yu, S.S. Park, Effects of extrusion speed on the microstructure and mechanical properties of ZK60 alloys with and without 1 wt% cerium addition, Mater. Sci. Eng. A. 583 (2013) 25-35.

DOI: 10.1016/j.msea.2013.06.073

Google Scholar

[21] Y.D. Qiao, X. Wang, Z.Y. Liu, E.D. Wang, Effects of grain size, texture and twinning on mechanical properties and work-hardening behaviors of pure Mg, Mater. Sci. Eng. A. 578 (2013) 240-246.

DOI: 10.1016/j.msea.2013.04.094

Google Scholar

[22] H.F. Sun, C.J. Li, Y. Xie, W.B. Fang, Microstructures and mechanical properties of pure magnesium bars by high ratio extrusion and its subsequent annealing treatment, Trans. Nonferrous Met. Soc. China. 22(2012) s445-s449.

DOI: 10.1016/s1003-6326(12)61744-0

Google Scholar

[23] A. G. Beer, in: C. Bettles, M. Barnett (Eds. ), Advances in Wrought Magnesium Alloys, Woodhead Publishing Limited, Cambridge, UK, 2012, pp.304-319.

Google Scholar

[24] J.A. Liu, Handbook of light alloy extrusion die, Metallurgical Industry Press, Beijing, 2011, p.213.

Google Scholar

[25] A.A. Kaya, Fatigue behavior, in: M.O. Pekguleryuz, K.U. Kainer, A.A. Kaya (Eds. ), Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publishing Limited, Cambridge, UK, 2013, p.49.

DOI: 10.1533/9780857097293

Google Scholar

[26] C.N. Tomé , S.R. Agnew, W.R. Blumenthal , M.A.M. Bourke , D.W. Brown , G.C. Kaschner, The relation between texture, twinning and mechanical properties in hexagonal aggregates, Mater. Sci. Forum. 408-412 (2002) 263-268.

DOI: 10.4028/www.scientific.net/msf.408-412.263

Google Scholar

[27] H. Somekawa, T. Mukai, Effect of grain refinement on fracture toughness in extruded pure magnesium, Scripta Mater. 53 (2005) 1059-1064.

DOI: 10.1016/j.scriptamat.2005.07.001

Google Scholar

[28] M. R. Barnett, Fundamentals of twinning, in: C. Bettles, M. Barnett (Eds. ), Advances in Wrought Magnesium Alloys, Woodhead Publishing Limited, Cambridge, UK, 2012, pp.118-125.

DOI: 10.1533/9780857093844

Google Scholar