Progress on Hydrothermal Synthesis of Biomedical Coatings on Magnesium Alloy

Article Preview

Abstract:

Hydrothermal synthesis as a new coating technique has been developed to produce biomedical coating in Mg alloys in recent years. This paper summarized the process feature and corrosion resistance of hydrothermal synthesis coating in Mg alloys, and then reviewed the synthesis process, microstructure, corrosion behavior and corrosion mechanism of the Mg (OH)2 biomedical coatings. Finally, the current problems and research prospect of this technique in biomedical Mg alloys were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

424-432

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mordike, B., Ebert, T. Magnesium: Properties—applications—potential. Materials Science and Engineering: A. 2001, 302, 37-45.

Google Scholar

[2] Yang, Z., Li, J., Zhang, J., Lorimer, G., Robson, J. Review on research and development of magnesium alloys. ActaMetallurgicaSinica (English Letters). 2008, 21, 313-28.

DOI: 10.1016/s1006-7191(08)60054-x

Google Scholar

[3] Aghion, E., Bronfin, B. Magnesium alloys development towards the 21st century. In: Materials Science Forum, Trans Tech Publ, 2000, Vol. 350, pp.19-30.

DOI: 10.4028/www.scientific.net/msf.350-351.19

Google Scholar

[4] Zucchi, F., Grassi, V., Frignani, A., Monticelli, C., Trabanelli, G. Electrochemical behaviour of a magnesium alloy containing rare earth elements. Journal of Applied Electrochemistry. 2006, 36, 195-204.

DOI: 10.1007/s10800-005-9053-3

Google Scholar

[5] Zhou, W., Shen, T., Aung, N.N. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid. Corrosion Science. 2010, 52, 1035-41.

DOI: 10.1016/j.corsci.2009.11.030

Google Scholar

[6] Gray, J., Luan, B. Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds. 2002, 336, 88-113.

DOI: 10.1016/s0925-8388(01)01899-0

Google Scholar

[7] Zhu, Y., Zhao, Q., Zhang, Y. -H., Wu, G. Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water. Surface and Coatings Technology. 2012, 206, 2961-6.

DOI: 10.1016/j.surfcoat.2011.12.029

Google Scholar

[8] Zhu, Y., Wu, G., Zhang, Y. -H., Zhao, Q. Growth and characterization of Mg (OH)2 film on magnesium alloy AZ31. Applied Surface Science. 2011, 257, 6129-37.

DOI: 10.1016/j.apsusc.2011.02.017

Google Scholar

[9] Shi E. W., Chen Z. Z., Er R. L., et al. Hydrothermal Crystallography[M]. Beijing: Science Press, (2004).

Google Scholar

[10] Li H. Q., Tan G. Q., An B. J., et al. Development and Study of Thin Films Derived by hydrothermal Technique [J]. Ceramic, 2007, 32(7): 21-24.

Google Scholar

[11] E Shi,CR Cho,MS Jang,et al. The formation mechanism of barium titanate thin film under hydrothermal conditions[J]. Journal of materials research, 1994, 9(11): 2914-2918.

DOI: 10.1557/jmr.1994.2914

Google Scholar

[12] XiaoxiaoGuo,Fazhi Zhang,David G Evans,et al. Layered double hydroxide films: synthesis, properties and applications[J]. Chemical Communications, 2010, 46(29): 5197-5210.

DOI: 10.1039/c0cc00313a

Google Scholar

[13] Derek E Beving,Andrew MP McDonnell,Weishen Yang,et al. Corrosion Resistant High-Silica-Zeolite MFI Coating One General Solution Formulation for Aluminum Alloy AA-2024-T3, AA-5052-H32, AA-6061-T4, and AA-7075-T6[J]. Journal of the Electrochemical Society, 2006, 153(8): B325-B329.

DOI: 10.1149/1.2207845

Google Scholar

[14] Fen Zhang,Shougang Chen,Chan Lin,et al. Anodic-hydrothermal preparation of prism-shaped CaTiO3 structure on titanium surface[J]. Applied Surface Science, 2011, 257(7): 3092-3096.

DOI: 10.1016/j.apsusc.2010.10.122

Google Scholar

[15] Hitoshi Ishizawa,Makoto Ogino. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment[J]. Journal of biomedical materials research, 1995, 29(9): 1071-1079.

DOI: 10.1002/jbm.820290907

Google Scholar

[16] Wang J. ,Li D. D,Yu X. ,et al. Hydrotalcite conversion coating on Mg alloy and its corrosion resistance[J]. Journal of Alloys and compounds, 2010, 494(1): 271-274.

DOI: 10.1016/j.jallcom.2010.01.007

Google Scholar

[17] Zhang M. Y., Guo X. W., Yang H. X., et al. Performance of Chemical Conversion Film on Mg-3Nd-Zn-Zr Alloy Prepared by Hydrothermal Treatment[J]. Corrosion Science and Protetion Technology, 2011, 23(3): 233-238.

Google Scholar

[18] Zhang M. Y., Guo X. W., Yang H. X., et al. Hydrothermal surface treatment on magnesium alloy [J]. Materials Protection, 2010, 43(7): 14-17.

Google Scholar

[19] Zhu Y. Y. ,Zhao Q. ,Zhang Y. H. ,et al. Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water[J]. Surface and Coatings Technology, 2012, 206(11): 2961-2966.

DOI: 10.1016/j.surfcoat.2011.12.029

Google Scholar

[20] Zhu Y. Y. ,Wu G. M. ,Zhang Y. H. ,et al. Growth and characterization of Mg (OH) 2 film on magnesium alloy AZ31[J]. Applied Surface Science, 2011, 257(14): 6129-6137.

DOI: 10.1016/j.apsusc.2011.02.017

Google Scholar

[21] Zhang H. X., Chen F. N., Wang S. Y., et al. Preparation and characterization of biocoating on magnesium alloy surface by one-step hydrothermal treatment[J]. Journal of Functional Materials, 2012, 43(13): 1730-1732.

Google Scholar

[22] Sachiko Hiromoto,Akiko Yamamoto. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution[J]. ElectrochimicaActa, 2009, 54(27): 7085-7093.

DOI: 10.1016/j.electacta.2009.07.033

Google Scholar

[23] Masanari Tomozawa,Sachiko Hiromoto. Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium[J]. Applied Surface Science, 2011, 257(19): 8253-8257.

DOI: 10.1016/j.apsusc.2011.04.087

Google Scholar

[24] Masanari Tomozawa,Sachiko Hiromoto. Microstructure of hydroxyapatite-and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values[J]. ActaMaterialia, 2011, 59(1): 355-363.

DOI: 10.1016/j.actamat.2010.09.041

Google Scholar

[25] Sachiko Hiromoto,Masanari Tomozawa. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaClsolution[J]. Surface and Coatings Technology, 2011, 205(19): 4711-4719.

DOI: 10.1016/j.surfcoat.2011.04.036

Google Scholar

[26] Masanari Tomozawa,Sachiko Hiromoto. Microstructure, corrosion resistance and adhesive strength of calcium phosphate coatings formed on pure magnesium by a simple immersion method[J]. ECS Transactions, 2011, 33(30): 31-37.

DOI: 10.1149/1.3566086

Google Scholar

[27] WF Ng,MH Wong,FT Cheng. Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks' solution[J]. Surface and Coatings Technology, 2010, 204(11): 1823-1830.

DOI: 10.1016/j.surfcoat.2009.11.024

Google Scholar

[28] Wai Fong Ng,Man Hon Wong,FT Cheng. Cerium-based coating for enhancing the corrosion resistance of bio-degradable Mg implants[J]. Materials Chemistry and Physics, 2010, 119(3): 384-388.

DOI: 10.1016/j.matchemphys.2009.09.010

Google Scholar

[29] Mark P Staiger,Alexis M Pietak,JerawalaHuadmai,et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006, 27(9): 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[30] Carla Lorenz,Johannes G Brunner,Philip Kollmannsberger,et al. Effect of surface pre-treatments on biocompatibility of magnesium[J]. ActaBiomaterialia, 2009, 5(7): 2783-2789.

DOI: 10.1016/j.actbio.2009.04.018

Google Scholar

[31] Jimmy C Yu,AnwuXu,Lizhi Zhang,et al. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates[J]. The Journal of Physical Chemistry B, 2004, 108(1): 64-70.

Google Scholar

[32] JianpingLv,LongzhenQiu,Baojun Qu. Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method[J]. Journal of Crystal Growth, 2004, 267(3): 676-684.

DOI: 10.1016/j.jcrysgro.2004.04.034

Google Scholar

[33] J Takebe,S Itoh,J Okada,et al. Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro[J]. Journal of biomedical materials research, 2000, 51(3): 398-407.

DOI: 10.1002/1097-4636(20000905)51:3<398::aid-jbm14>3.0.co;2-#

Google Scholar

[34] Janine Fischer,Daniel Pröfrock,Norbert Hort,et al. Reprint of: Improved cytotoxicity testing of magnesium materials[J]. Materials Science and Engineering: B, 2011, 176(20): 1773-1777.

DOI: 10.1016/j.mseb.2011.06.002

Google Scholar