[1]
Mordike, B., Ebert, T. Magnesium: Properties—applications—potential. Materials Science and Engineering: A. 2001, 302, 37-45.
Google Scholar
[2]
Yang, Z., Li, J., Zhang, J., Lorimer, G., Robson, J. Review on research and development of magnesium alloys. ActaMetallurgicaSinica (English Letters). 2008, 21, 313-28.
DOI: 10.1016/s1006-7191(08)60054-x
Google Scholar
[3]
Aghion, E., Bronfin, B. Magnesium alloys development towards the 21st century. In: Materials Science Forum, Trans Tech Publ, 2000, Vol. 350, pp.19-30.
DOI: 10.4028/www.scientific.net/msf.350-351.19
Google Scholar
[4]
Zucchi, F., Grassi, V., Frignani, A., Monticelli, C., Trabanelli, G. Electrochemical behaviour of a magnesium alloy containing rare earth elements. Journal of Applied Electrochemistry. 2006, 36, 195-204.
DOI: 10.1007/s10800-005-9053-3
Google Scholar
[5]
Zhou, W., Shen, T., Aung, N.N. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid. Corrosion Science. 2010, 52, 1035-41.
DOI: 10.1016/j.corsci.2009.11.030
Google Scholar
[6]
Gray, J., Luan, B. Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds. 2002, 336, 88-113.
DOI: 10.1016/s0925-8388(01)01899-0
Google Scholar
[7]
Zhu, Y., Zhao, Q., Zhang, Y. -H., Wu, G. Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water. Surface and Coatings Technology. 2012, 206, 2961-6.
DOI: 10.1016/j.surfcoat.2011.12.029
Google Scholar
[8]
Zhu, Y., Wu, G., Zhang, Y. -H., Zhao, Q. Growth and characterization of Mg (OH)2 film on magnesium alloy AZ31. Applied Surface Science. 2011, 257, 6129-37.
DOI: 10.1016/j.apsusc.2011.02.017
Google Scholar
[9]
Shi E. W., Chen Z. Z., Er R. L., et al. Hydrothermal Crystallography[M]. Beijing: Science Press, (2004).
Google Scholar
[10]
Li H. Q., Tan G. Q., An B. J., et al. Development and Study of Thin Films Derived by hydrothermal Technique [J]. Ceramic, 2007, 32(7): 21-24.
Google Scholar
[11]
E Shi,CR Cho,MS Jang,et al. The formation mechanism of barium titanate thin film under hydrothermal conditions[J]. Journal of materials research, 1994, 9(11): 2914-2918.
DOI: 10.1557/jmr.1994.2914
Google Scholar
[12]
XiaoxiaoGuo,Fazhi Zhang,David G Evans,et al. Layered double hydroxide films: synthesis, properties and applications[J]. Chemical Communications, 2010, 46(29): 5197-5210.
DOI: 10.1039/c0cc00313a
Google Scholar
[13]
Derek E Beving,Andrew MP McDonnell,Weishen Yang,et al. Corrosion Resistant High-Silica-Zeolite MFI Coating One General Solution Formulation for Aluminum Alloy AA-2024-T3, AA-5052-H32, AA-6061-T4, and AA-7075-T6[J]. Journal of the Electrochemical Society, 2006, 153(8): B325-B329.
DOI: 10.1149/1.2207845
Google Scholar
[14]
Fen Zhang,Shougang Chen,Chan Lin,et al. Anodic-hydrothermal preparation of prism-shaped CaTiO3 structure on titanium surface[J]. Applied Surface Science, 2011, 257(7): 3092-3096.
DOI: 10.1016/j.apsusc.2010.10.122
Google Scholar
[15]
Hitoshi Ishizawa,Makoto Ogino. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment[J]. Journal of biomedical materials research, 1995, 29(9): 1071-1079.
DOI: 10.1002/jbm.820290907
Google Scholar
[16]
Wang J. ,Li D. D,Yu X. ,et al. Hydrotalcite conversion coating on Mg alloy and its corrosion resistance[J]. Journal of Alloys and compounds, 2010, 494(1): 271-274.
DOI: 10.1016/j.jallcom.2010.01.007
Google Scholar
[17]
Zhang M. Y., Guo X. W., Yang H. X., et al. Performance of Chemical Conversion Film on Mg-3Nd-Zn-Zr Alloy Prepared by Hydrothermal Treatment[J]. Corrosion Science and Protetion Technology, 2011, 23(3): 233-238.
Google Scholar
[18]
Zhang M. Y., Guo X. W., Yang H. X., et al. Hydrothermal surface treatment on magnesium alloy [J]. Materials Protection, 2010, 43(7): 14-17.
Google Scholar
[19]
Zhu Y. Y. ,Zhao Q. ,Zhang Y. H. ,et al. Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water[J]. Surface and Coatings Technology, 2012, 206(11): 2961-2966.
DOI: 10.1016/j.surfcoat.2011.12.029
Google Scholar
[20]
Zhu Y. Y. ,Wu G. M. ,Zhang Y. H. ,et al. Growth and characterization of Mg (OH) 2 film on magnesium alloy AZ31[J]. Applied Surface Science, 2011, 257(14): 6129-6137.
DOI: 10.1016/j.apsusc.2011.02.017
Google Scholar
[21]
Zhang H. X., Chen F. N., Wang S. Y., et al. Preparation and characterization of biocoating on magnesium alloy surface by one-step hydrothermal treatment[J]. Journal of Functional Materials, 2012, 43(13): 1730-1732.
Google Scholar
[22]
Sachiko Hiromoto,Akiko Yamamoto. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution[J]. ElectrochimicaActa, 2009, 54(27): 7085-7093.
DOI: 10.1016/j.electacta.2009.07.033
Google Scholar
[23]
Masanari Tomozawa,Sachiko Hiromoto. Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium[J]. Applied Surface Science, 2011, 257(19): 8253-8257.
DOI: 10.1016/j.apsusc.2011.04.087
Google Scholar
[24]
Masanari Tomozawa,Sachiko Hiromoto. Microstructure of hydroxyapatite-and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values[J]. ActaMaterialia, 2011, 59(1): 355-363.
DOI: 10.1016/j.actamat.2010.09.041
Google Scholar
[25]
Sachiko Hiromoto,Masanari Tomozawa. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaClsolution[J]. Surface and Coatings Technology, 2011, 205(19): 4711-4719.
DOI: 10.1016/j.surfcoat.2011.04.036
Google Scholar
[26]
Masanari Tomozawa,Sachiko Hiromoto. Microstructure, corrosion resistance and adhesive strength of calcium phosphate coatings formed on pure magnesium by a simple immersion method[J]. ECS Transactions, 2011, 33(30): 31-37.
DOI: 10.1149/1.3566086
Google Scholar
[27]
WF Ng,MH Wong,FT Cheng. Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks' solution[J]. Surface and Coatings Technology, 2010, 204(11): 1823-1830.
DOI: 10.1016/j.surfcoat.2009.11.024
Google Scholar
[28]
Wai Fong Ng,Man Hon Wong,FT Cheng. Cerium-based coating for enhancing the corrosion resistance of bio-degradable Mg implants[J]. Materials Chemistry and Physics, 2010, 119(3): 384-388.
DOI: 10.1016/j.matchemphys.2009.09.010
Google Scholar
[29]
Mark P Staiger,Alexis M Pietak,JerawalaHuadmai,et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006, 27(9): 1728-1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[30]
Carla Lorenz,Johannes G Brunner,Philip Kollmannsberger,et al. Effect of surface pre-treatments on biocompatibility of magnesium[J]. ActaBiomaterialia, 2009, 5(7): 2783-2789.
DOI: 10.1016/j.actbio.2009.04.018
Google Scholar
[31]
Jimmy C Yu,AnwuXu,Lizhi Zhang,et al. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates[J]. The Journal of Physical Chemistry B, 2004, 108(1): 64-70.
Google Scholar
[32]
JianpingLv,LongzhenQiu,Baojun Qu. Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method[J]. Journal of Crystal Growth, 2004, 267(3): 676-684.
DOI: 10.1016/j.jcrysgro.2004.04.034
Google Scholar
[33]
J Takebe,S Itoh,J Okada,et al. Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro[J]. Journal of biomedical materials research, 2000, 51(3): 398-407.
DOI: 10.1002/1097-4636(20000905)51:3<398::aid-jbm14>3.0.co;2-#
Google Scholar
[34]
Janine Fischer,Daniel Pröfrock,Norbert Hort,et al. Reprint of: Improved cytotoxicity testing of magnesium materials[J]. Materials Science and Engineering: B, 2011, 176(20): 1773-1777.
DOI: 10.1016/j.mseb.2011.06.002
Google Scholar