Microstructural Evolution and Mechanical Behavior of AZ31 Magnesium Alloy Sheets with Li Addition

Article Preview

Abstract:

AZ31 magnesium alloy and its alloy with 5% lithium were extruded to 1mm in thickness sheets at 380 oC with extrusion ratio of 101. Microstructure evolution and mechanical behavior of the extruded Mg alloy sheets were examined. The microstructure and texture evolution were investigate by electronic backscattered diffraction (EBSD) and X-ray diffraction (XRD). Mechanical performance was carried out by tensile tests at room temperature. In addition, the evolution of neutral layer and microstructure was also examined by V-bending. It was found that Li addition resulted in the strong divergence of the grain orientation. (0002) basal texture of AZ31 alloy sheets with 5% lithium has been weakened. The room temperature ductility of these textural sheets was enhanced owing to the tilted weak basal texture. Moreover, it exhibits superior ductility during V-bending process at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-403

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Luo, J. Magn. Alloys, 1 (2013) 2-22.

Google Scholar

[2] S. Seipp, M.F.X. Wagner, K. Hockauf, I. Schneider, L.W. Meyer, M. Hockauf, Int. J. Plasticity, 35 (2012) 155-166.

DOI: 10.1016/j.ijplas.2012.03.007

Google Scholar

[3] S.M. Arab, A. Akbarzadeh, J. Magn. Alloys, 1 (2013) 145-149.

Google Scholar

[4] Q. Yang, B. Jiang, X. Li, H. Dong, W. Liu, F. Pan, J. Magn. Alloys, 2 (2014) 8-12.

Google Scholar

[5] S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, V.H. Hammond, Scri. Mater, 67 (2012) 439-442.

DOI: 10.1016/j.scriptamat.2012.05.017

Google Scholar

[6] S.R. AGNEW, J.A. HORTON, M.H. YOO, Metall. Mater. Trans. A, 33 (2002) 851-858.

Google Scholar

[7] Z. Drozd, Z. Trojanová, S. Kúdela, J. Alloy. Compd, 378 (2004) 192-195.

Google Scholar

[8] R. Li, F. Pan, B. Jiang, H. Dong, Q. Yang, Mater. Sci. Eng A, 562 (2013) 33-38.

Google Scholar

[9] R. Li, F. Pan, B. Jiang, Q. Yang, A. Tang, Mater Design, 46 (2013) 922-927.

Google Scholar

[10] T. Zhu, C. Cui, T. Zhang, R. Wu, S. Betsofen, Z. Leng, J. Zhang, M. Zhang, Mater Design, (2014).

Google Scholar

[11] H. Dong, F. Pan, B. Jiang, Y. Zeng, Mater Design, 57 (2014) 121-127.

Google Scholar

[12] J. Zhang, L. Zhang, Z. Leng, S. Liu, R. Wu, M. Zhang, Scri. Mater, 68 (2013) 675-678.

Google Scholar

[13] H. Dong, F. Pan, B. Jiang, J. Dai, Q. Yang, J. Alloy. Compd, (2013).

Google Scholar

[14] B. Song, R. Xin, G. Chen, X. Zhang, Q. Liu, Scri. Mater, 66 (2012) 1061-1064.

Google Scholar

[15] Q.S. Yang, B. Jiang, Y. Tian, W.J. Liu, F.S. Pan, Materials Letters, 100 (2013) 29-31.

Google Scholar

[16] B. Song, G. Huang, H. Li, L. Zhang, G. Huang, F. Pan, J. Alloy. Compd, 489 (2010) 475-481.

Google Scholar

[17] J.A. del Valle, F. Carreño, O.A. Ruano, Acta Mater, 54 (2006) 4247-4259.

Google Scholar

[18] G. Huang, L. Wang, H. Zhang, Y. Wang, Z. Shi, F. Pan, Materials Letters, 98 (2013) 47-50.

Google Scholar