Microstructure and Phase Transformation of Super-High Pressure Mg-Li Alloy

Article Preview

Abstract:

Super-high pressure (SHP) changes crystal structure and electronic distribution of metallic materials, which plays an important role in properties. Herein, a duplex Mg-7%wt.Li alloy was heat-treated under SHP (2 GPa) by cubic-anvil large-volume press with six rams for 2 h in the temperature range of 450~1350 °C. Microstructure, phase transformation behavior and mechanical properties were examined. Compared with the as-cast sample, the SHP samples after heat-treating from 450 °C to 750 °C under 2 GPa were composed of twinning in addition to duplex structure. Comparatively, the samples treated between 1050 °C and 1350 °C exhibit typical dendritic morphology. Phase transformation from Li3Mg7 phase or Li0.92Mg4.08 phase to Li3Mg17 phase occurred during the whole investigated temperature range, in which only the Li3Mg17 phase maintained when the temperature exceeds 1050 °C. The microhardness of the sample prepared at 750 °C under 2 GPa was 73.15HV, which is 1.5 times higher than that of the as-cast one. The improved microhardness is mainly attributed to the formation of nanosized twins during SHP treatment. These fine twins effectively prohibit the dislocation movement during deformation. It reveals the SHP is an effective approach to prepare high performation Mg alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

375-380

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.U. Kainer and F. von Buch, in Magnesium – Alloys and Technology, edited by Wiley-VCH Verlag GmbH & Co. KGaA, (2004), 1-22.

Google Scholar

[2] A.M. Russell, L.S. Chumbley, V.B. Gantovnik ,K. Xu, Y. Tian, F. C. Laabs, Anomalously high impact fracture toughness in B.C.C. Mg-Li between 4. 2K and 77K. Scripta Mater. 39(1998), pp.1663-1667.

DOI: 10.1016/s1359-6462(98)00379-0

Google Scholar

[3] T. Liu, Y.D. Wang, S.D. Wu, R. Lin Peng, C. X. Huang, C. B. Jiang, S. X. Li, Textures and mechanical behavior of Mg–3. 3%Li alloy after ECAP. Scripta Mater. 51(2004), pp.1057-1061.

DOI: 10.1016/j.scriptamat.2004.08.007

Google Scholar

[4] C. -W. Yang, T. -S. Lui, L. -H. Chen , H. -E. Hung, Tensile mechanical properties and failure behaviors with the ductile-to-brittle transition of the α+β-type Mg–Li–Al–Zn alloy. Scripta Mater. 61(2009), pp.1141-1144.

DOI: 10.1016/j.scriptamat.2009.08.037

Google Scholar

[5] T. Wang, M. Zhang, Zh. Niu, B. Liu, Influence of Rare Earth elements on microstructure and mechanical properties of Mg-Li alloys. J. Rare Earth. 24(2006), pp.797-800.

DOI: 10.1016/s1002-0721(07)60032-5

Google Scholar

[7] T. Zhu, C. Cui, T. Zhang , R. Wu, Betsofen, Sergey, Z. Leng, J. Zhang, M. Zhang, Influence of the combined addition of Y and Nd on the microstructure and mechanical properties of Mg–Li alloy, Mater. Des. 57(2014), pp.245-249.

DOI: 10.1016/j.matdes.2013.12.057

Google Scholar

[8] J. Zhang, L. Zhang, Z. Leng and S. Liu, Liu, Shujuan, R. Wu, M. Zhang, Experimental study on strengthening of Mg–Li alloy by introducing long-period stacking ordered structure, Scripta Mater. 68(2013), pp.675-678.

DOI: 10.1016/j.scriptamat.2013.01.023

Google Scholar

[9] B. Srinivasarao, A.P. Zhilyaev, I. Gutiérrez-Urrutia, M.T. Pérez-Prado, Stabilization of metastable phases in Mg–Li alloys by high-pressure torsion, Scripta Mater. 68 (2013), pp.583-586.

DOI: 10.1016/j.scriptamat.2012.12.008

Google Scholar

[10] H. Dong, F. Pan, B. Jiang , Y. Zeng, Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio, Mater. Des. 57(2014), pp.121-127.

DOI: 10.1016/j.matdes.2013.12.055

Google Scholar

[11] J.S. Schilling, The use of high pressure in basic and materials science, J. Phys. Chem. Solids 59(1998), pp.553-568.

Google Scholar

[12] Y. Tian, B. Xu, D. Yu and Y. Ma, Y. Wang, Y. Jiang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L. M. Wang, B. Wen, J. He, Z. Liu, Ultrahard nanotwinned cubic boron nitride, Nature 493(2013), pp.385-8.

DOI: 10.1038/nature11728

Google Scholar

[13] H. Zhao, J. Pan, H. Li , Y. Tian, Q. Peng, Spherical strengthening precipitate in a Mg-10wt%Y alloy with superhigh pressure aging, Mater. Lett. 96(2013), pp.16-19.

DOI: 10.1016/j.matlet.2013.01.015

Google Scholar

[14] W. Zhang, A.R. Oganov, A.F. Goncharov and Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov, E. Stavrou, M. Somayazulu, V. B. Prakapenka, Konopkova, Z. Unexpected stable stoichiometries of sodium chlorides, Science 342(2013), pp.1502-1505.

DOI: 10.1126/science.1244989

Google Scholar

[15] W. Wu, Q. Peng, J. Guo and S. Zhao: Mater. Lett. 117(2014), pp.45-48.

Google Scholar

[16] Q. Peng, W. Wu, J. Guo and J. Xiang, S. Zhao, J. Appl. Phys. 115(2014), p.023511.

Google Scholar

[17] H. Liu, Y. Chen, Y. Tang and S. Wei, G. Niu, The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)% Sn alloys, J. Alloys and Compd. 440(2007), pp.122-126.

DOI: 10.1016/j.jallcom.2006.09.024

Google Scholar

[18] H.D.B. Jenkins, in Chemical Thermodynamics at a Glance, edited by Blackwell Publishing Ltd, (2008), 76-77.

Google Scholar

[19] Y. Estrin, H. Mecking: Acta Metall. A unified phenomenological description of work hardening and creep based on one-parameter models, 32(1984), pp.57-70.

DOI: 10.1016/0001-6160(84)90202-5

Google Scholar