[1]
K.U. Kainer and F. von Buch, in Magnesium – Alloys and Technology, edited by Wiley-VCH Verlag GmbH & Co. KGaA, (2004), 1-22.
Google Scholar
[2]
A.M. Russell, L.S. Chumbley, V.B. Gantovnik ,K. Xu, Y. Tian, F. C. Laabs, Anomalously high impact fracture toughness in B.C.C. Mg-Li between 4. 2K and 77K. Scripta Mater. 39(1998), pp.1663-1667.
DOI: 10.1016/s1359-6462(98)00379-0
Google Scholar
[3]
T. Liu, Y.D. Wang, S.D. Wu, R. Lin Peng, C. X. Huang, C. B. Jiang, S. X. Li, Textures and mechanical behavior of Mg–3. 3%Li alloy after ECAP. Scripta Mater. 51(2004), pp.1057-1061.
DOI: 10.1016/j.scriptamat.2004.08.007
Google Scholar
[4]
C. -W. Yang, T. -S. Lui, L. -H. Chen , H. -E. Hung, Tensile mechanical properties and failure behaviors with the ductile-to-brittle transition of the α+β-type Mg–Li–Al–Zn alloy. Scripta Mater. 61(2009), pp.1141-1144.
DOI: 10.1016/j.scriptamat.2009.08.037
Google Scholar
[5]
T. Wang, M. Zhang, Zh. Niu, B. Liu, Influence of Rare Earth elements on microstructure and mechanical properties of Mg-Li alloys. J. Rare Earth. 24(2006), pp.797-800.
DOI: 10.1016/s1002-0721(07)60032-5
Google Scholar
[7]
T. Zhu, C. Cui, T. Zhang , R. Wu, Betsofen, Sergey, Z. Leng, J. Zhang, M. Zhang, Influence of the combined addition of Y and Nd on the microstructure and mechanical properties of Mg–Li alloy, Mater. Des. 57(2014), pp.245-249.
DOI: 10.1016/j.matdes.2013.12.057
Google Scholar
[8]
J. Zhang, L. Zhang, Z. Leng and S. Liu, Liu, Shujuan, R. Wu, M. Zhang, Experimental study on strengthening of Mg–Li alloy by introducing long-period stacking ordered structure, Scripta Mater. 68(2013), pp.675-678.
DOI: 10.1016/j.scriptamat.2013.01.023
Google Scholar
[9]
B. Srinivasarao, A.P. Zhilyaev, I. Gutiérrez-Urrutia, M.T. Pérez-Prado, Stabilization of metastable phases in Mg–Li alloys by high-pressure torsion, Scripta Mater. 68 (2013), pp.583-586.
DOI: 10.1016/j.scriptamat.2012.12.008
Google Scholar
[10]
H. Dong, F. Pan, B. Jiang , Y. Zeng, Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio, Mater. Des. 57(2014), pp.121-127.
DOI: 10.1016/j.matdes.2013.12.055
Google Scholar
[11]
J.S. Schilling, The use of high pressure in basic and materials science, J. Phys. Chem. Solids 59(1998), pp.553-568.
Google Scholar
[12]
Y. Tian, B. Xu, D. Yu and Y. Ma, Y. Wang, Y. Jiang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L. M. Wang, B. Wen, J. He, Z. Liu, Ultrahard nanotwinned cubic boron nitride, Nature 493(2013), pp.385-8.
DOI: 10.1038/nature11728
Google Scholar
[13]
H. Zhao, J. Pan, H. Li , Y. Tian, Q. Peng, Spherical strengthening precipitate in a Mg-10wt%Y alloy with superhigh pressure aging, Mater. Lett. 96(2013), pp.16-19.
DOI: 10.1016/j.matlet.2013.01.015
Google Scholar
[14]
W. Zhang, A.R. Oganov, A.F. Goncharov and Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov, E. Stavrou, M. Somayazulu, V. B. Prakapenka, Konopkova, Z. Unexpected stable stoichiometries of sodium chlorides, Science 342(2013), pp.1502-1505.
DOI: 10.1126/science.1244989
Google Scholar
[15]
W. Wu, Q. Peng, J. Guo and S. Zhao: Mater. Lett. 117(2014), pp.45-48.
Google Scholar
[16]
Q. Peng, W. Wu, J. Guo and J. Xiang, S. Zhao, J. Appl. Phys. 115(2014), p.023511.
Google Scholar
[17]
H. Liu, Y. Chen, Y. Tang and S. Wei, G. Niu, The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)% Sn alloys, J. Alloys and Compd. 440(2007), pp.122-126.
DOI: 10.1016/j.jallcom.2006.09.024
Google Scholar
[18]
H.D.B. Jenkins, in Chemical Thermodynamics at a Glance, edited by Blackwell Publishing Ltd, (2008), 76-77.
Google Scholar
[19]
Y. Estrin, H. Mecking: Acta Metall. A unified phenomenological description of work hardening and creep based on one-parameter models, 32(1984), pp.57-70.
DOI: 10.1016/0001-6160(84)90202-5
Google Scholar