Constitutive Modeling of Magnesium Alloys with Distortional Hardening

Article Preview

Abstract:

Anisotropic mechanical behavior is one of the key factors restricting the processing procedure of magnesium alloys. This pronounced anisotropy, however, cannot be characterized by classical isotropic or kinematic hardening due to the constant shape of yield surfaces during plastic deformation. Therefore, the shape evolution of yield surfaces, also known as distortional hardening is the main way to capture the anisotropic behavior. Based on elasto-plasticity theory at finite strain, constitutive model with distortional hardening for Mg alloys is proposed. The thermodynamical consistency is proved. The anisotropic mechanical behavior of AZ31 sheet is demonstrated after material parameters calibration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

393-398

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Miehe, C., Schotte, J., Lambrecht, M.: J. Mech. Phys. Solids Vol. 50 (2002), p.2123.

Google Scholar

[2] Homayonifar, M., Mosler, J.: Int. J. Plast. Vol. 28 (2012), p.1.

Google Scholar

[3] K. Zhang, B. Holmedal, O.S. Hopperstad, S. Dumoulin, J. Gawad, A. Van Bael and P. Van Houtte: Int. J. Plast. (2014), in press.

Google Scholar

[4] Nebebe, M., Bohlen, J., Steglich, D., Letzig, D.: Int. J. Mater. Form. Vol. 2 (2009), p.53.

Google Scholar

[5] Steglich, D. et al. : Int. J. Mater. Form. Vol. 4 (2011), p.243.

Google Scholar

[6] Yi, S. et al. : Acta Mater. Vol. 58 (2009), p.592.

Google Scholar

[7] Hill, R. : Proc. R. Soc. Vol. 193 (1948), p.281.

Google Scholar

[8] Agnew, S. R., Duygulu O.: Int. J. Plast. Vol. 21 (2005), p.1161.

Google Scholar

[9] Agnew, S. R., Yoo, M. H., Tome C. N.: Acta Mater. Vol. 49 (2001), p.4277.

Google Scholar

[10] Cazacu, O., Barlat, F.: Int. J. Plast. Vol. 20 (2004), p. (2027).

Google Scholar

[11] Cazacu, O., Plunkett, B., Barlat, F.: Int. J. Plast. Vol. 22 (2006), p.1171.

Google Scholar

[12] Shi, B., Mosler, J.: Int. J. Plast. Vol. 44 (2013), p.1.

Google Scholar

[13] Haddadi, H., Bouvier, S., Banu, M., Maier, C., Teodosiu, C.: Int. J. Plast. Vol. 22 (2006), p.2226.

Google Scholar

[14] Hiwatashi, S., Bael, A., Houtte, P., Teodosiu, C.: Int. J. Plast. Vol. 14 (1998), p.647.

Google Scholar

[15] Noman, M., Clausmeyer, T., Barthel, C., Svendsen, B., Huetink, J., Riel, M.: Mater. Sci. Eng. A Vol. 527(2010), p.2515.

Google Scholar

[16] Feigenbaum, H., Ph.D. thesis, (2008), University of California Davis.

Google Scholar

[17] Feigenbaum, H., Dafalias, Y.: Int. J. Solids Struct. Vol. 44 (2007), p.7526.

Google Scholar

[18] Ishikawa, H.: Int. J. Plast. Vol. 13 (1997), p.533.

Google Scholar

[19] Herrera-Solaz, V., LLorca, J., Dogan, E., Karaman, I., Segurado, J.: Int. J. Plast. (2014), in press.

Google Scholar

[20] Lee, E.: J. Appl. Mech. Vol. 36 (1969), p.1.

Google Scholar

[21] Coleman, B., Gurtin, M.: J. Chem. Phys. Vol. 47 (1967), p.597.

Google Scholar

[22] Mandel, J.: Plasticite classique et viscoplasticitite. (1971) CISM.

Google Scholar

[23] Lemaitre, J.: J. Eng. Mat. Techn. Vol. 107 (1985), p.83.

Google Scholar

[24] Yi, S. B., Davies, Ch. H. J.: Acta Mater., Vol. 54 (2006), p.549.

Google Scholar

[25] Choi, S. H. Shin, E. J., Seong, B. S.: Acta Mater., Vol. 55 (2007), p.4181.

Google Scholar

[26] Yin, D. L., Wang, J. T., Liu, J. Q., Zhao, X.: J. Alloys Compd., Vol. 478 (2009), p.789.

Google Scholar