Influences of Tensile Temperature on the Mechanical Properties of Rolled Mg-Zn-Gd Sheets with Non-Basal Texture

Article Preview

Abstract:

Mg-2.0Zn-xGd sheets with non-basal texture were fabricated by common rolling process, which showed excellent ductility and formability at room temperature. In this paper, tensile tests were carried out at moderate temperature along the rolling direction and transverse direction to evaluate the influences of tensile temperature on mechanical properties and formability of the sheet. The microstructural evolution during tensile deformation was also investigated to analysis deformation mechanisms. The results showed that the elongation of the sheets increased from 57% at 373K to 253% at 573°C along the rolling direction, while the yield strength decreased with the increase of tensile temperature. The microstructure observation indicated that twining was one of the deformation modes and no dynamic recrytallization took place during deformation at 373K. With temperature increasing up to 473K, dynamic recrystallization took place and led to finer microstructure. This suggests that the formability of the Mg-Zn-Gd sheets with high ductility at room temperature could be further improved by increasing temperature up to 473K, which could refine the microstructure leading to higher strength during second forming process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

381-386

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Stanford, M.R. Barnett, The origin of rare earth, texture development in extruded Mg-based alloys and its effect on tensile ductility , Mater. Sci. Eng. A. 496 (2008) 399-408.

DOI: 10.1016/j.msea.2008.05.045

Google Scholar

[2] R. Cottam, J. Robson, G. Lorimer, B. Davis, Dynamic recrystallization of Mg and Mg-Y alloys: Crystallographic texture development, Mater. Sci. Eng. A. 485 (2008) 375-382.

DOI: 10.1016/j.msea.2007.08.016

Google Scholar

[3] S. Sandlobes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys. Acta Mater. 59 (2011) 429-439.

DOI: 10.1016/j.actamat.2010.08.031

Google Scholar

[4] B.L. Wu, Y.H. Zhao, X.H. Du, Y.D. Zhang, F. Wagner, C. Esling, Ductility enhancement of extruded magnesium via yttrium addition, Mater. Sci. Eng. A. 527(2010) 4334-4340.

DOI: 10.1016/j.msea.2010.03.054

Google Scholar

[5] N. Stanford, Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study, Sci. Eng. A. 527(2010) 2669-2677.

DOI: 10.1016/j.msea.2009.12.036

Google Scholar

[6] Y. Chino, K. Sassa, M. Mabuchi, Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study, Mater. Sci. Eng. A. 513-514(2009) 394-400.

Google Scholar

[7] Y. Chino, M. Kado, Enhancement of tensile ductility and stretch formability of magnesium by addition of 0. 2wt%(0. 035at%)Ce, M. Mabuchi, Mater. Sci. Eng. A. 494(2008) 343-349.

DOI: 10.1016/j.msea.2008.04.059

Google Scholar

[8] J. Bohlen, M.R. Nunberg, J.W. Senn, D. Letzig, S.R. Agnew, The texture and anisotropy of magnesium-zinc-rare earth alloy sheets, Mater. Sci. Eng. A. 55(2007) 2101-2112.

DOI: 10.1016/j.actamat.2006.11.013

Google Scholar

[9] H. Yan, R.S. Chen, E.H. Han, Room-temperature ductility and anisotropy of two rolled Mg-Zn-Gd alloys, Mater. Sci. Eng. A. 527(2010) 3317-3322.

DOI: 10.1016/j.msea.2010.02.038

Google Scholar

[10] H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma, E.H. Han, Activation of {10-12} twinning and slip in high ductile Mg-2. 0Zn-0. 8Gd rolled sheet with non-basal texture during tensile deformation at room temperature, J. Alloys Compd. 566(2013).

DOI: 10.1016/j.jallcom.2013.03.008

Google Scholar

[11] H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma, E.H. Han, Twins, shear bands and recrystallization of a Mg-2. 0%Zn-0. 8%Gd alloy during rolling, Scr. Mater. 64 (2011) 141-144.

DOI: 10.1016/j.scriptamat.2010.09.029

Google Scholar

[12] H. Yan, R.S. Chen, N. Zheng, J. Luo, S. Kamado, E.H. Han, Effects of trace Gd concentration on texture and mechanical properties of hot-rolled Mg-2Zn-xGd sheets, J. Magnes. Alloy 1(2013) 23-30.

DOI: 10.1016/j.jma.2013.02.003

Google Scholar

[13] S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, V.H. Hammond, Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy, Scr. Mater. 67(2012) 439-442.

DOI: 10.1016/j.scriptamat.2012.05.017

Google Scholar

[14] M.R. Barnett, M.D. Nave, A. Ghaderi, Yield point elongation due to twinning in a magnesium alloy, Acta Mater. 60 (2012) 1433-1443.

DOI: 10.1016/j.actamat.2011.11.022

Google Scholar

[15] C.J. Geng, B.L. Wu, X.H. Du, Y.D. Wang, Y.D. Zhang, F. Wagner, C. Esling, Stress–strain response of textured AZ31B magnesium alloy under uniaxial tension at the different strain rates, Mater. Sci. Eng. A 559 (2013) 307-313.

DOI: 10.1016/j.msea.2012.08.103

Google Scholar

[16] J.R. Luo, A. Godfrey, W. Liu, Q. Liu, Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling, Acta Mater. 60 (2012) 1986-(1998).

DOI: 10.1016/j.actamat.2011.12.017

Google Scholar