[1]
F. S. Pan and H. E. H, High Performance Wrought Magnesium Alloys and their processes, Science Press, China, 2007, p.11.
Google Scholar
[2]
H. W. Chang, D. Qiu, J. A. Taylor, M. A. Easton and M. X. Zhang, The role of Al2Y in grain refinement in Mg-Al-Y alloy system, J. Magnes. Alloy. 1(2013) 115-120.
DOI: 10.1016/j.jma.2013.07.006
Google Scholar
[3]
A. Issa, J. E. Saal, C. Wolverton, Physical factors controlling the observed high-strength precipitate morphology in Mg-rare earth alloys, Acta Mater. 65 (2014) 240-250.
DOI: 10.1016/j.actamat.2013.10.066
Google Scholar
[4]
L. Zhang, Z.Y. Cao, Y.B. Liu, G.H. Su, L.R. Cheng, Effect of Al content on the microstructures and mechanical properties of Mg-Al alloys, Mat Sci Eng A. 508 (2009) 129-133.
DOI: 10.1016/j.msea.2008.12.029
Google Scholar
[5]
M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scripta Mater. 53(2005)799–803.
DOI: 10.1016/j.scriptamat.2005.06.006
Google Scholar
[6]
T. Honma, N. Kunito, S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scripta Mater. 61(2009)644–647.
DOI: 10.1016/j.scriptamat.2009.06.003
Google Scholar
[7]
Ozturk K, Zhong Y, Luo AA, Liu ZK, Creep Resistant Mg-Al-Ca Alloys: Computational Thermodynamics and Experimental Investigation, JOM. 55(2003) A40-A44.
DOI: 10.1007/s11837-003-0208-6
Google Scholar
[8]
Zhong Y, Luo AA, Sofo JO, Liu ZK, First-principles investigation of laves phases in Mg-Al-Ca system , Magnesium-Sci Technol Appl. 169(2005)488-489.
DOI: 10.4028/www.scientific.net/msf.488-489.169
Google Scholar
[9]
J. Jayaraj, C.L. Mendis, T. Ohkubo, K. Oh-ishi, K. Hono, Enhanced precipitation hardening of Mg–Ca alloy by Al addition, Scripta Mater. 63(2010)831.
DOI: 10.1016/j.scriptamat.2010.06.028
Google Scholar
[10]
T. Homma, S. Nakawaki, S. Kamado, Improvement in creep property of a cast Mg–6Al–3Ca alloy by Mn addition, Scripta Mater. 63(2010) 1173.
DOI: 10.1016/j.scriptamat.2010.08.033
Google Scholar
[11]
N.D. Saddock, A. Suzuki, J.W. Jones, T.M. Pollock, Grain-scale creep processes in Mg-Al-Ca base alloys: Implications for alloy design, Scripta Mater. 63(2010) 692.
DOI: 10.1016/j.scriptamat.2010.03.055
Google Scholar
[12]
B. Tang, S. S. Li, X. S. Wang, D. B. Zeng, R. Wu, Effect of Ca/Sr composite addition into AZ91D alloy on hot-crack mechanism, Scripta Mater. 53 (2005)1077-1082.
DOI: 10.1016/j.scriptamat.2005.06.039
Google Scholar
[13]
S. M Liang, R.S. Chen, J.J. Blandin, M. Suery, E.H. Han, Thermal analysis and solidification pathways of Mg–Al–Ca system alloys, Mat Sci Eng A, 480(2008) 365.
DOI: 10.1016/j.msea.2007.07.025
Google Scholar
[14]
R. Ninomiya, T. Ojiro, K. Kubota, Improved heat resistance of Mg-Al alloys by the Ca addition, Acta Metall Mater. 43(1995) 669-674.
DOI: 10.1016/0956-7151(94)00269-n
Google Scholar
[15]
L. H. Han, O. Derek, Northwood, Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5. 0 wt. % Al alloy, Mater Lett. 62(2008)381-384.
DOI: 10.1016/j.matlet.2007.05.047
Google Scholar
[16]
Y. A. Chen, H. Liu, R. Y. Ye, G. Q. Liu, Effects of the addition of Ca and Sb on the microstructure and mechanical properties of AZ91 magnesium, Mat Sci Eng A. 587 (2013) 262-267.
DOI: 10.1016/j.msea.2013.07.092
Google Scholar
[17]
Z. T. Jiang, B. Jiang, Y. Xiao, Effects of Al content on microstructure of ascast Mg–3. 5Ca alloy, Mater Res Innov. 18, S4(2014)136-141.
DOI: 10.1179/1432891714z.000000000663
Google Scholar