Forming of the Battery Cell Packing in Extruded AZ31 Magnesium Alloys through Backward Extrusion

Article Preview

Abstract:

Mg batteries have received increasing attention mainly because of their high volumetric capacity (3832 mAhcm−3). In order to form type NO.5 cell packing for Magnesium battery the finite element simulation by Deform 3D was carried out. Then backward extrusion was conducted on an AZ31 magnesium alloy at 300°C. The results show that battery cell packing with the wall of 0.35 mm can be formed through backward extrusion with an AZ31 Mg alloys. A significant grain size refining was resulted from hot BE, however, the microstructure in different positions of the Mg cell packing was inhomogeneous. At bottom of the packing, the microstructure was formed by equiaxial and relatively coarse grains. The wall of the Mg cell packing was made of much finer grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

492-497

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.F. Wang, G.S. Huang, Q. Quan, P. Bassani, E. Mostaed, M. Vedani, F.S. Pan, The effect of twinning and detwinning on the mechanical property of AZ31 extruded magnesium alloy during strain-path changes. Mater. Des. 63 (2014) 177–184.

DOI: 10.1016/j.matdes.2014.05.056

Google Scholar

[2] L.F. Wang, G.S. Huang, Z.Y. Shi, H. Zhang, P. Bassani, M. Vedani, F.S. Pan, The effects of detwinning on the mechanical properties of AZ31B magnesium alloy with different strain rates at 423K. Mater. Sci. Eng. A . 612(2014)423–430.

DOI: 10.1016/j.msea.2014.06.081

Google Scholar

[3] L. Wang, Q. Qiao, Y. Liu, X. Song, Formability of AZ31 Mg alloy sheets within medium temperatures, J. Magn. Alloys. 1(2013)312–317.

DOI: 10.1016/j.jma.2014.01.001

Google Scholar

[4] T. Li, K. Zhang, X.G. Li, Z.W. Du, Y.J. Li, M.L. Ma, G.L. Shi, Dynamic precipitation during multi-axial forging of an Mg–7Gd–5Y–1Nd–0. 5Zr alloy, J. Magn. Alloys, 1(2013)47–53.

DOI: 10.1016/j.jma.2013.02.005

Google Scholar

[5] Q.S. Yang, B. Jiang, X. Li, H.W. Dong, W.J. Liu, F.S. Pan, Microstructure and mechanical behavior of the Mg–Mn–Ce magnesium alloy sheets, J Magn. Alloys, 2(2014) 8–12.

DOI: 10.1016/j.jma.2014.01.009

Google Scholar

[6] H. Zhang, W. Jin, J.F. Fan, W.L. Cheng, H.J. Roven, B.S. Xu, H.B. Dong. Grain refining and improving mechanical properties of a warm rolled AZ31 alloy plate, Mater Lett, 135, 2014, 31–34.

DOI: 10.1016/j.matlet.2014.07.130

Google Scholar

[7] H Zhang, G.S. Huang, J.F. Fan, H. J. Roven, F.S. Pan, B.S. Xu, Deep drawability and deformation behavior of AZ31 magnesium alloy sheets at 473 K, Mater. Sci. Eng. A, 608(2014) 234–241.

DOI: 10.1016/j.msea.2014.04.081

Google Scholar

[8] J.F. Deng, G.S. Huang, Y.C. Zhao, B. Wang, Electrochemical Performance of AZ31 Magnesium Alloy under Different Processing Conditions, Rare Metal Mater. Eng., 43(2014)316–321.

DOI: 10.1016/s1875-5372(14)60066-7

Google Scholar

[9] G.S., Huang, L.F. Wang, H. Zhang, Y.X. Wang, Z.Y. Shi, F.S. Pan. Evolution of neutral layer and microstructure of AZ31B magnesium alloy sheet during bending. Mater. Lett., 98(2013)47–50.

DOI: 10.1016/j.matlet.2013.02.055

Google Scholar

[10] L.F. Wang, H.C. Li, G.S. Huang, H. Zhang, S. Jiang, B. Liu, F.S. Pan, Forming of Seat Bidet by AZ31 Magnesium Alloy through Stamping Process. Mater. Sci. Forum, 788(2014)103-109.

DOI: 10.4028/www.scientific.net/msf.788.103

Google Scholar

[11] L.F. Wang, G.S. Huang, H. Zhang, Y.X. Wang, L. Yin, Evolution of springback and neutral layer of AZ31B magnesium alloy V-bending under warm forming conditions. J Mater. Process. Techno., 213(2013)844–850.

DOI: 10.1016/j.jmatprotec.2013.01.005

Google Scholar

[12] L.F. Wang, G.S. Huang, H.C. Li, H. Zhang, Influence of strain rate on microstructure and formability of AZ31B magnesium alloy sheets. Trans. Nonferrous Met. Soc. China, 23(2013) 916-922.

DOI: 10.1016/s1003-6326(13)62548-0

Google Scholar

[13] H. Zhang, Y. Liu, J.F. Fan, H.J. Roven, W.L. Cheng, B.S. Xu, H.B. Dong, Microstructure evolution and mechanical properties of twinned AZ31 alloy plates at lower elevated temperature, J. Alloys Compd, 615(2014)687–692.

DOI: 10.1016/j.jallcom.2014.07.045

Google Scholar

[14] S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Naderi, Ali A. Roostaei, Deformation homogeneity in accumulative back extrusion processing of AZ31 magnesium alloy, J. Alloys Compd 507 (2010) 207–214.

DOI: 10.1016/j.jallcom.2010.07.157

Google Scholar

[15] G. Faraji, H. Jafarzadeh, H.J. Jeong, M.M. Mashhadi, H.S. Kim, Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy, Mater. Des. 35 (2012) 251–258.

DOI: 10.1016/j.matdes.2011.09.057

Google Scholar

[16] H. Zhang, G.S. Huang, J.F. Fan, H.J. Roven, B.S. Xu, H.B. Dong, Deep drawability and drawing behaviour of AZ31 alloy sheets with different initial texture, J. Alloys Compd., 615(2014) 302–310.

DOI: 10.1016/j.jallcom.2014.06.199

Google Scholar

[17] X. Li, W. Qi, K. Zheng, N. Zhou, Enhanced strength and ductility of Mg–Gd–Y–Zr alloys by secondary extrusion, J Magn. Alloys, 1(2013)54–63.

DOI: 10.1016/j.jma.2013.02.006

Google Scholar

[18] B.Q. Shi, R.S. Chen, W. Ke, Influence of grain size on the tensile ductility and deformation modes of rolled Mg–1. 02 wt. % Zn alloy, J Magn. Alloys, 1(2013)210–216.

DOI: 10.1016/j.jma.2013.09.001

Google Scholar