Quantitative Phase Field Study on the Precipitation Dynamics of γ′ Phase in Ni-Based Superalloys with Different Concentration

Article Preview

Abstract:

A quantitative phase field simulation was performed on the dynamics evolution of γ′ (L12-Ni3X) phase in Ni-based superalloys, the microstructure, the volume fraction and the particle size distribution (PSD) of γ′ phase for Ni-Al alloys aged at 1173K with the Al concentration c=0.178, 0.180 and 0.182 were investigated, and the results were compared with Lifshitz-Slyozov-Wagner (LSW) theory and Brailsford-Wynblatt (BW) theory. As the Al concentration increases the γ′ phase morphology changed from the separated cuboidal shape to the connected rectangle shape, the nucleation and growth of γ′ phase became faster and the volume fraction of the γ′ phase increased. The average particle radius <r> of γ′ phase and the aging time t has a exponent relationship <r> ~ tn at the coarsening stage with the exponents n=0.313, 0.235 and 0.204 for c=0.178, 0.180 and 0.182, respectively. The peaks of the fitted PSDs are less than the predicted value from the LSW theory and the fitted PSDs are wider than that of LSW predicted, while they are similar to that of the BW theory as the Al concentration increases. The peaks appear at a smaller r/<r> than the predictions of the LSW and BW theories.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

655-661

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. L. Cheng, Y. S. Li, L. Zhang and H. Zhu, Phase field simulation of morphology evolution and coarsening of γ' intermetallic phase in Ni–Al alloy, Mater. Sci. & Technol. 29 (2013) 364-369.

DOI: 10.1179/1743284712y.0000000159

Google Scholar

[2] C. G. Garay-Reyes, F. Hernández-Santiago, N. Cayetano-Castro, V. M López -Hirata, J. García-Rocha, J. L. Hernández-Rivera, H. J. Dorantes-Rosales and J. J. Cruz-Rivera, Study of phase decomposition and coarsening of γ' precipitates in Ni-12 at. % Ti alloy, Mater. Charact. 83 (2013).

DOI: 10.1016/j.matchar.2013.05.017

Google Scholar

[3] K. S. Chantal, D. Z. Tiffany, D. N. Ronald and N. S. David, Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy, Acta Mater. 55 (2008) 1145-1157.

DOI: 10.1016/j.actamat.2007.09.042

Google Scholar

[4] I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids. 19 (1961) 35-50.

DOI: 10.1016/0022-3697(61)90054-3

Google Scholar

[5] C. Wagner, Theorie der alterung von niederschlagen durch umlosen (ostwald-reifung), Z. Elektrochem. 65 (1961) 581-591.

DOI: 10.1002/bbpc.19610650704

Google Scholar

[6] T. Maebashi and M. Doi, Coarsening behaviours of coherent and precipitates in elastically constrained Ni–Al–Ti alloys, Mater. Sci. Eng. A. 373 (2004) 72-79.

DOI: 10.1016/j.msea.2003.12.064

Google Scholar

[7] A. D. Brailsford and P. WynblattOstwald, The dependence of ostwald ripening kinetics on particle volume fraction, Acta Metall. 27 (1979) 489-497.

DOI: 10.1016/0001-6160(79)90041-5

Google Scholar

[8] K. E. Yoon, R. D. Noebe and D. N. Seidman, Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni–Cr–Al superalloy. I: experimental observations, Acta Mater. 55 (2007) 1145-1157.

DOI: 10.1016/j.actamat.2006.08.027

Google Scholar

[9] A. J. Ardell, A1-L12 interfacial free energies from data on coarsening in five binary Ni alloys, informed by thermodynamic phase diagram assessments, J. Mater. Sci. 46 (2011) 4832-4849.

DOI: 10.1007/s10853-011-5395-x

Google Scholar

[10] A. J. Ardell, Trans-interface-diffusion-controlled coarsening of γ' precipitates in ternary Ni–Al–Cr alloys, Acta Mater. 61 (2013) 7828-7840.

DOI: 10.1016/j.actamat.2013.09.021

Google Scholar

[11] A. J. Ardell, Quantitative predictions of the trans-interface diffusion-controlled theory of particle coarsening, Acta Mater. 58 (2010) 4325-4331.

DOI: 10.1016/j.actamat.2010.04.018

Google Scholar

[12] N. Akaiwa and P. W. Voorhees, Late-stage phase separation: dynamics, spatial correlations, and structure functions, Phys. Rev. E. 49 (1994) 3860-3880.

DOI: 10.1103/physreve.49.3860

Google Scholar

[13] H. Wendt and P. Hassen, Nucleation and growth of γ' precipitates in Ni-14 at. % Al, Acta Mater. 31(1993) 1649-1659.

DOI: 10.1016/0001-6160(83)90163-3

Google Scholar

[14] J. Wang, L. T. Zhang and K. Chen, Morphology and chemical composition of γ/γ' phases in Re-containing Ni-based single crystal superalloy during two-step aging, T. Nonferr. Metal. Soc. 21 (2011) 1513-1517.

DOI: 10.1016/s1003-6326(11)60889-3

Google Scholar

[15] Y. Wang and A. G. Khachaturyan, Effect of antiphase domains on shape and spatial arrangement of coherent ordered intermetallics, Scri. Mater. 31 (1994) 1425-1430.

DOI: 10.1016/0956-716x(94)90130-9

Google Scholar

[16] Y. Wang and A. G. Khachaturyan, Shape instability during precipitate growth in coherent solids, Acta Mater. 43 (1995) 1837-1857.

DOI: 10.1016/0956-7151(94)00406-8

Google Scholar

[17] V. Vaithyanathan and L. Q. Chen, Coarsening of ordered intermetallic precipitates with coherency stress, Acta Mater. 50 (2002) 4061-4073.

DOI: 10.1016/s1359-6454(02)00204-5

Google Scholar

[18] J. Z. Zhu, Z. K. Liu, V. Vaithyanathan and L. Q. Chen, Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys, Scri. Mater. 46 (2002) 401-406.

DOI: 10.1016/s1359-6462(02)00013-1

Google Scholar

[19] J. C. Wang, M. Osawa, T. Yokokawa, H. Harada and M. Enomoto, Phase-field modeling with CALPHAD and CVM for microstructural evolution of Ni-base superalloy, TMS, (2004) 933-940.

DOI: 10.7449/2004/superalloys_2004_933_940

Google Scholar

[20] J. C. Wang, M. Osawa, T. Yokokawa, H. Harada and M. Enomoto, Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM, Comp. Mat. Sci. 39 (2007) 871-879.

DOI: 10.1016/j.commatsci.2006.10.014

Google Scholar

[21] Y. Wang, D. Banerjee, C. C. Su and A. G. Khachaturyan, Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from F.C. C solid solution, Acta Mater. 46 (1998) 2983-3001.

DOI: 10.1016/s1359-6454(98)00015-9

Google Scholar

[22] A. T. Dinsdale, SGTE data for pure elements, Calphad. 15(1991) 317-425.

DOI: 10.1016/0364-5916(91)90030-n

Google Scholar

[23] I. Absara, N. Dupin, H. L. Lukas and B. Sumdman, Thermodynamic assessment of the Al-Ni system, J. Alloys Comp. 247 (1997) 20-30.

Google Scholar

[24] A. G. Khachaturyan, in: Theory of Structural Transformations in Solids (Wiley & Sons, New York 1983).

Google Scholar

[25] Y. S. Li, Y. Z. Yu, X. L. Cheng and G. Chen, Phase field simulation of precipitates morphology with dislocations under applied stress, Mater. Sci. Eng. A. 528 (2011) 8628-8634.

DOI: 10.1016/j.msea.2011.08.024

Google Scholar

[26] Y. S. Li, Y. X. Pang, X. C. Wu and W. L, Effects of temperature gradient and elastic strain on spinodal decomposition and microstructure evolution of binary alloys, Modelling Simul. Mater. Sci. Eng. 22 (2014) 035009.

DOI: 10.1088/0965-0393/22/3/035009

Google Scholar

[27] S. Y. Hu and L. Q. Chen, A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater. 49 (2001) 1879-1890.

DOI: 10.1016/s1359-6454(01)00118-5

Google Scholar

[28] A. J. Ardell, The effects of elastic interactions on precipitate microstructural evolution in elastically inhomogeneous nickel-base alloys, Phi. Mag. 94 (2014) 2101-2130.

DOI: 10.1080/14786435.2014.906756

Google Scholar

[29] L. Q. Chen and J. Shen, Application of semi-implicit fourier-spectral method to phase field equations, Comp. Phys. Commun. 108 (1998) 147-158.

DOI: 10.1016/s0010-4655(97)00115-x

Google Scholar

[30] J. Z. Zhu and L. Q. Chen, Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit fourier spectral method, Phy. Rev. E 60 (1999) 3564-3572.

DOI: 10.1103/physreve.60.3564

Google Scholar

[31] X. L. Cheng, Y. S. Li, L. Zhang and H. Zhu, Precipitate behavior and microstructure evolution of γ' phase in Ni-Al alloys with the internal elastic strain, Mater. Sci. Forum 749 (2013) 491-497.

DOI: 10.4028/www.scientific.net/msf.749.491

Google Scholar

[32] Y. H. Wen, B. Wang, J. P. Simmons and Y. Wang, A phase-field model for heat treatment applications in Ni-based alloys, Acta Mater. 54 (2006) 2087-(2099).

DOI: 10.1016/j.actamat.2006.01.001

Google Scholar

[33] E. Y. Plotnikov, Z. G. Mao, R. D. Noebe and D. N. Seidman, Temporal evolution of the γ(fcc)/γ'(L12) interfacial width in binary Ni-Al alloys, Scri. Mater. 70 (2014) 51-54.

DOI: 10.1016/j.scriptamat.2013.09.016

Google Scholar