[1]
X. L. Cheng, Y. S. Li, L. Zhang and H. Zhu, Phase field simulation of morphology evolution and coarsening of γ' intermetallic phase in Ni–Al alloy, Mater. Sci. & Technol. 29 (2013) 364-369.
DOI: 10.1179/1743284712y.0000000159
Google Scholar
[2]
C. G. Garay-Reyes, F. Hernández-Santiago, N. Cayetano-Castro, V. M López -Hirata, J. García-Rocha, J. L. Hernández-Rivera, H. J. Dorantes-Rosales and J. J. Cruz-Rivera, Study of phase decomposition and coarsening of γ' precipitates in Ni-12 at. % Ti alloy, Mater. Charact. 83 (2013).
DOI: 10.1016/j.matchar.2013.05.017
Google Scholar
[3]
K. S. Chantal, D. Z. Tiffany, D. N. Ronald and N. S. David, Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy, Acta Mater. 55 (2008) 1145-1157.
DOI: 10.1016/j.actamat.2007.09.042
Google Scholar
[4]
I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids. 19 (1961) 35-50.
DOI: 10.1016/0022-3697(61)90054-3
Google Scholar
[5]
C. Wagner, Theorie der alterung von niederschlagen durch umlosen (ostwald-reifung), Z. Elektrochem. 65 (1961) 581-591.
DOI: 10.1002/bbpc.19610650704
Google Scholar
[6]
T. Maebashi and M. Doi, Coarsening behaviours of coherent and precipitates in elastically constrained Ni–Al–Ti alloys, Mater. Sci. Eng. A. 373 (2004) 72-79.
DOI: 10.1016/j.msea.2003.12.064
Google Scholar
[7]
A. D. Brailsford and P. WynblattOstwald, The dependence of ostwald ripening kinetics on particle volume fraction, Acta Metall. 27 (1979) 489-497.
DOI: 10.1016/0001-6160(79)90041-5
Google Scholar
[8]
K. E. Yoon, R. D. Noebe and D. N. Seidman, Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni–Cr–Al superalloy. I: experimental observations, Acta Mater. 55 (2007) 1145-1157.
DOI: 10.1016/j.actamat.2006.08.027
Google Scholar
[9]
A. J. Ardell, A1-L12 interfacial free energies from data on coarsening in five binary Ni alloys, informed by thermodynamic phase diagram assessments, J. Mater. Sci. 46 (2011) 4832-4849.
DOI: 10.1007/s10853-011-5395-x
Google Scholar
[10]
A. J. Ardell, Trans-interface-diffusion-controlled coarsening of γ' precipitates in ternary Ni–Al–Cr alloys, Acta Mater. 61 (2013) 7828-7840.
DOI: 10.1016/j.actamat.2013.09.021
Google Scholar
[11]
A. J. Ardell, Quantitative predictions of the trans-interface diffusion-controlled theory of particle coarsening, Acta Mater. 58 (2010) 4325-4331.
DOI: 10.1016/j.actamat.2010.04.018
Google Scholar
[12]
N. Akaiwa and P. W. Voorhees, Late-stage phase separation: dynamics, spatial correlations, and structure functions, Phys. Rev. E. 49 (1994) 3860-3880.
DOI: 10.1103/physreve.49.3860
Google Scholar
[13]
H. Wendt and P. Hassen, Nucleation and growth of γ' precipitates in Ni-14 at. % Al, Acta Mater. 31(1993) 1649-1659.
DOI: 10.1016/0001-6160(83)90163-3
Google Scholar
[14]
J. Wang, L. T. Zhang and K. Chen, Morphology and chemical composition of γ/γ' phases in Re-containing Ni-based single crystal superalloy during two-step aging, T. Nonferr. Metal. Soc. 21 (2011) 1513-1517.
DOI: 10.1016/s1003-6326(11)60889-3
Google Scholar
[15]
Y. Wang and A. G. Khachaturyan, Effect of antiphase domains on shape and spatial arrangement of coherent ordered intermetallics, Scri. Mater. 31 (1994) 1425-1430.
DOI: 10.1016/0956-716x(94)90130-9
Google Scholar
[16]
Y. Wang and A. G. Khachaturyan, Shape instability during precipitate growth in coherent solids, Acta Mater. 43 (1995) 1837-1857.
DOI: 10.1016/0956-7151(94)00406-8
Google Scholar
[17]
V. Vaithyanathan and L. Q. Chen, Coarsening of ordered intermetallic precipitates with coherency stress, Acta Mater. 50 (2002) 4061-4073.
DOI: 10.1016/s1359-6454(02)00204-5
Google Scholar
[18]
J. Z. Zhu, Z. K. Liu, V. Vaithyanathan and L. Q. Chen, Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys, Scri. Mater. 46 (2002) 401-406.
DOI: 10.1016/s1359-6462(02)00013-1
Google Scholar
[19]
J. C. Wang, M. Osawa, T. Yokokawa, H. Harada and M. Enomoto, Phase-field modeling with CALPHAD and CVM for microstructural evolution of Ni-base superalloy, TMS, (2004) 933-940.
DOI: 10.7449/2004/superalloys_2004_933_940
Google Scholar
[20]
J. C. Wang, M. Osawa, T. Yokokawa, H. Harada and M. Enomoto, Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM, Comp. Mat. Sci. 39 (2007) 871-879.
DOI: 10.1016/j.commatsci.2006.10.014
Google Scholar
[21]
Y. Wang, D. Banerjee, C. C. Su and A. G. Khachaturyan, Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from F.C. C solid solution, Acta Mater. 46 (1998) 2983-3001.
DOI: 10.1016/s1359-6454(98)00015-9
Google Scholar
[22]
A. T. Dinsdale, SGTE data for pure elements, Calphad. 15(1991) 317-425.
DOI: 10.1016/0364-5916(91)90030-n
Google Scholar
[23]
I. Absara, N. Dupin, H. L. Lukas and B. Sumdman, Thermodynamic assessment of the Al-Ni system, J. Alloys Comp. 247 (1997) 20-30.
Google Scholar
[24]
A. G. Khachaturyan, in: Theory of Structural Transformations in Solids (Wiley & Sons, New York 1983).
Google Scholar
[25]
Y. S. Li, Y. Z. Yu, X. L. Cheng and G. Chen, Phase field simulation of precipitates morphology with dislocations under applied stress, Mater. Sci. Eng. A. 528 (2011) 8628-8634.
DOI: 10.1016/j.msea.2011.08.024
Google Scholar
[26]
Y. S. Li, Y. X. Pang, X. C. Wu and W. L, Effects of temperature gradient and elastic strain on spinodal decomposition and microstructure evolution of binary alloys, Modelling Simul. Mater. Sci. Eng. 22 (2014) 035009.
DOI: 10.1088/0965-0393/22/3/035009
Google Scholar
[27]
S. Y. Hu and L. Q. Chen, A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater. 49 (2001) 1879-1890.
DOI: 10.1016/s1359-6454(01)00118-5
Google Scholar
[28]
A. J. Ardell, The effects of elastic interactions on precipitate microstructural evolution in elastically inhomogeneous nickel-base alloys, Phi. Mag. 94 (2014) 2101-2130.
DOI: 10.1080/14786435.2014.906756
Google Scholar
[29]
L. Q. Chen and J. Shen, Application of semi-implicit fourier-spectral method to phase field equations, Comp. Phys. Commun. 108 (1998) 147-158.
DOI: 10.1016/s0010-4655(97)00115-x
Google Scholar
[30]
J. Z. Zhu and L. Q. Chen, Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit fourier spectral method, Phy. Rev. E 60 (1999) 3564-3572.
DOI: 10.1103/physreve.60.3564
Google Scholar
[31]
X. L. Cheng, Y. S. Li, L. Zhang and H. Zhu, Precipitate behavior and microstructure evolution of γ' phase in Ni-Al alloys with the internal elastic strain, Mater. Sci. Forum 749 (2013) 491-497.
DOI: 10.4028/www.scientific.net/msf.749.491
Google Scholar
[32]
Y. H. Wen, B. Wang, J. P. Simmons and Y. Wang, A phase-field model for heat treatment applications in Ni-based alloys, Acta Mater. 54 (2006) 2087-(2099).
DOI: 10.1016/j.actamat.2006.01.001
Google Scholar
[33]
E. Y. Plotnikov, Z. G. Mao, R. D. Noebe and D. N. Seidman, Temporal evolution of the γ(fcc)/γ'(L12) interfacial width in binary Ni-Al alloys, Scri. Mater. 70 (2014) 51-54.
DOI: 10.1016/j.scriptamat.2013.09.016
Google Scholar