Preparation and Characterization of Amorphous Al-Based Metal Foams

Article Preview

Abstract:

Amorphous Al-Cu-Ti metal foams with the porosity of 65% were prepared by spark plasma sintering with both the diameter and height of 10 mm. The SPS process was carried out under the pressure, the dwell time and the temperatures of 300 MPa, 5min and 623-673K, respectively. The microstructure and mechanical behavior of the amorphous Al-Cu-Ti metal foams were investigated. The results showed that sintering at high temperatures improved the crystallinity and adhesion between particles. The intermetallic compounds, i.e. Al-Ti, Al-Cu and Al-Cu-Ti were identified from the XRD patterns. It was found that weak adhesion and irregular shape of NaCl might reduce the mechanical properties. The highest strength of amorphous Al-based metal foam sintered at 653K, 300MPa was 7.97MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

682-687

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Kim, I. Kim, A. Kim, S.J. Kim and J. Park: Acta Mechanica Solida Sinica, Vol. 21 (2008) No. 3, pp.241-246.

DOI: 10.1007/s10338-008-0827-0

Google Scholar

[2] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.G.N. Wadley: Metals Foams: A Design Guide (Butterworth Heinemann, Boston USA 2000).

Google Scholar

[3] D. Ruan, G. Lua, F.L. Chen and E. Siores: Composite Structures, Vol. 57 (2002) No. 1-4, pp.331-336.

Google Scholar

[4] Y. Kawamura, H. Mano and A. Inoue: Scripta Materialia, Vol. 57 (2002), pp.1599-1604.

Google Scholar

[5] A.H. Brothers, D.C. Dunand: Scripta Materialia, Vol. 54 (2006), pp.513-520.

Google Scholar

[6] U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir: Scripta Materialia, Vol. 54 (2006), 823-828.

DOI: 10.1016/j.scriptamat.2005.11.015

Google Scholar

[7] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: Journal of Materials Science, Vol. 41 (2006), pp.763-777.

Google Scholar

[8] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti and G. Cao: Materials Science and Engineering R, Vol. 63 (2009), pp.127-287.

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[9] D. Roy, S. Kumari, R. Mitra and I. Manna: Intermetallics, Vol. 15 (2007), pp.1595-1605.

Google Scholar

[10] Z. Tan, Y.F. Xue, L. Wang, X.W. Cheng, L. Zhang, H.F. Zhang and A.M. Wang: Powder Metallurgy, Vol. 55 (2012), pp.361-367.

Google Scholar

[11] M. Nygren and J.Z. Shen: Solid State Science, Vol. 5 (2003), pp.125-131.

Google Scholar

[12] C.Y. Xü, S.S. Jia and Z.Y. Cao: Materials Characterization, Vol. 54 (2005), pp.394-398.

Google Scholar

[13] M. Omori: Materials Science and Engineering A, Vol. 287 (2000), pp.183-188.

Google Scholar

[14] G.T. Huang, X.Q. Zuo , J.S. Lu and Y. Zhou: The Chinese Journal of Nonferrous Metals, Vol. 22 (2012) No. 8, pp.2340-2346. (in Chinese).

Google Scholar

[15] Z.J. Shen, M. Johnsson, Z. Zhao and M. Nygren: Journal of the American Ceramic Society, Vol. 85 (2002), p.1921-(1927).

Google Scholar