Corrosion Behavior of Tungsten Copper Alloy Produced by Infiltration Sintering

Article Preview

Abstract:

In this paper, W80CuNi0.3 alloy was prepared by cold isostatic pressing (CIP) and infiltration sintering, and its corrosion behavior was investigated by neutral salt spray accelerated test, immersion test and electrochemical measurement. It turned out that in the neutral salt spray and immersion test,the mass loss and corrosion rate of W80CuNi0.3 were far lower than those of 45 steel. The corrosion mainly occurs in the bonding phase of Cu, and the initial corrosion form of W80CuNi0.3 was pitting, the main reason of W80CuNi0.3 corrosion was Cl- erosion. The polarization curves analysis showed that compared with 45 steel, W80CuNi0.3 alloy had higher corrosion potential and lower corrosion current. Therefore, W80CuNi0.3 alloy are prone to stable passivation, so it has superior corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

699-704

Citation:

Online since:

April 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G. Kim, S.T. Oh, H. Jeon, C.H. Lee and Y.D. Kima: J. Alloys Compd Vol. 354 (2003), p.239.

Google Scholar

[2] F. Doré, C.L. Martin and C.H. Allibert: Mater. Sci. Eng. A Vol. 383 (2004), p.390.

Google Scholar

[3] V. Gauthier, F. Robaut, A. Upadhyaya and C.H. Allibert: J. Alloys Compd Vol. 361 (2003), p.222.

Google Scholar

[4] Sebastian KV: Int J Powd Metall Powd Tech Vol. 17(1981), p.297.

Google Scholar

[5] Hong M-H et al: In: Proc of the 13th Int Plansee Sem, PlanseeAG, Reutte-in-Tirol, (1993), p.451.

Google Scholar

[6] Wojtasik K and Stolarz S: In: Proc of the 13th Int Plansee Sem, Plansee AG, Reutte-in-Tirol, (1993), pp.471-8.

Google Scholar

[7] Moon I-H, Ryu S-S and Kim J-C: In: Proc of the 14th Int PlanseeSem, Plansee AG, Reutte-in-Tirol, (1997), p.16.

Google Scholar

[8] Lee, S. H., Kwon, S. Y., &Ham and H. J.: Thermochimica ActaVol. 542, (2012). p.2.

Google Scholar

[9] P. Chen, G. Luo., Q. Shen, M. Li and L. Zhang: Mater. Des Vol. 46, (2013). p.101.

Google Scholar

[10] Atwater, M. A., Roy, D., Darling, K. A., Butler, B. G., Scattergood, R. O., & Koch, C. C: Mater. Sci. Eng. A Vol. 558, (2012). P. 226.

Google Scholar

[11] P. Chen, Q. Shen, G. Luo, M. Li and L. Zhang: International Journal of Refractory Metals and Hard Materials Vol. 36, (2013). p.220.

Google Scholar

[12] J. Das, G. Appa Rao and S. K. Pabi: Mater. Sci. Eng. A Vol. 527, (2010), P 7841.

Google Scholar

[13] J. Das, A. Chakraborty, T. P. Bagchi and B. Sarma: International Journal of Refractory Metals and Hard Materials Vol. 26, (2008). p.530.

DOI: 10.1016/j.ijrmhm.2007.12.005

Google Scholar

[14] A. Ogundipe , B. Greenberg , W. Braida , C. Christodoulatos and D. Dermatas: Corros. Sci. Vol. 48, (2006), p.3281.

Google Scholar

[15] Y. Ishijima, K. Kakiuchi,T. Furuya,H. Kurishita,M. Hasegawa,T. Igarashi and M. Kawai: Journal of Nuclear Materials. Vol. 307-311, (2002), p.1369.

DOI: 10.1016/s0022-3115(02)01066-8

Google Scholar

[16] H. L. Chen, X. J. Li and Y. Wei: Corro. Protec. Vol. 28, (2007). p.17.

Google Scholar

[17] J. Zh. Huang, B. Y. Huang and H. B. Lv: Powder Metal. Tech. Vol. 14, (1996). p.37.

Google Scholar