Effect of HA Content on Microstructure and Compression Properties of Ti-Nb-Sn/HA Composites Fabricated by Plasma Current Activated Sintering

Article Preview

Abstract:

Novel bio-composites were synthesized by plasma current activated sintering from the Ti-35Nb-2.5Sn/HA powders ball-milled for 12 h. The aim of this study was to investigate the effects of HA content (5, 10 and 15 wt%) on sintering properties, microstructure and compression properties of Ti-35Nb-2.5Sn/HA bio-composites. Results indicated that sintering rate decreased slightly with the increase of HA content. The phases of sintered composites were mainly˰ڂ˽̤̹˼˰̘̑˼˰Ca3(PO4)2(TCP), TiO2, CaTiO3 and TixPy. The grain size of sintered composites reduced with the increasing of HA content, and sintered composites with ultra fine grains were fabricated finally. The compression test showed that all the sintered composites had low elastic modulus and high compression strength. The elastic modulus of Ti-35Nb-2.5Sn/15HA sintered composites was 22GPa with a high strength of 877MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

705-710

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.B. Taddei, V.A.R. Henriques, C.R.M. Silva and C.A.A. Cairo: Mater. Sci. Eng. C Vol. 24 (2004), p.683.

Google Scholar

[2] M. Niinomi: Met Mater Trans Vol. 34A (2001), p.477.

Google Scholar

[3] M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia: Prog. Mater Sci. Vol. 54 (2009), p.397.

Google Scholar

[4] S. Hanada, H. Matsumoto, S. Watanabe: International Congress Series Vol. 1284 (2005), p.239.

Google Scholar

[5] C.Q. Ning, Y. Zhou: Acta Biomaterialia Vol. 4 (2008), p. (1944).

Google Scholar

[6] L.L. Hench, J. Wilson: Science Vol. 226 (1984), p.630.

Google Scholar

[7] S. Gautier, E. Champion, D. Bernache-Assollant, T. Chartier: J Eur Ceram Soc. Vol. 19 (1999), p.469.

Google Scholar

[8] J.P. Li, J.R. de Wijn, C.A. Van Blitterswijk, K. de Groot: Biomaterials Vol. 27 (2006), p.1223.

Google Scholar

[9] R.V. Noort: J Mater Sci. Vol. 22 (1987), p.3801.

Google Scholar

[10] Y. Kong, S. Kim, H. Kim and I. Lee: J Am Ceram Soc. Vol. 82 (1999), p.2963.

Google Scholar

[11] A. Nouri, P.D. Hodgson and C.E. Wen: ACTA BIOMATER. Vol. 6 (2010), p.1630.

Google Scholar

[12] I. Cvijović-Alagić, Z. Cvijović, S. Mitrović, V. Panić and Rakin M: Corros. Sci. Vol. 53 (2011), p.796.

DOI: 10.1016/j.corsci.2010.11.014

Google Scholar

[13] D.L. Zhang: Progress in Materials Science Vol. 49 (2004), p.537.

Google Scholar

[14] X.P. Wang, Y.Y. Chen, L.J. Xu, S.L. Xiao, F.T. Kong and K.D. Woo: J MECH BEHAV BIOMED. Vol. 4 (2011), p. (2074).

Google Scholar

[15] H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko and I.J. Shon: Int. J. Refract. Met. H Vol. 26 (2008), p.48.

Google Scholar

[16] A.N. Omran, K.D. Woo, E.P. Kwon, N.A. Barakat, H.B. Lee, S.W. Kim and D.L. Zhang: Science of Advanced Materials Vol. 1 (2009), p.205.

Google Scholar