[1]
G.B. Burger, A.K. Gupta, P.W. Jeffrey, D.J. Lloyd, Microstructural control of aluminum sheet used in automotive applications, Materials Characterization, 35(1995) 23-39.
DOI: 10.1016/1044-5803(95)00065-8
Google Scholar
[2]
G.S. Cole, A.M. Sherman, Lightweight materials for automotive applications, Materials Characterization. 35(1995) 3-9.
Google Scholar
[3]
W. Wen, Y.M. Zhao, J.G. Morris, The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys. Materials Science and Engineering A. 392(2005) 136-144.
DOI: 10.1016/j.msea.2004.09.059
Google Scholar
[4]
N.S. Lee, J.H. Chen, Anisotropic tensile ductility of cold-rolled and annealed aluminum alloy sheet and the beneficial effect of post-anneal rolling, Scripta Materialia. 60(2009) 340-343.
DOI: 10.1016/j.scriptamat.2008.10.036
Google Scholar
[5]
H. Takuda, N. Yamazaki, N. Hatta, S. Kikuchi, Influence of cold-rolling and annealing conditions on formability of aluminium alloy sheet, Journal of Materials Sciences. 311(1995) 957-963.
DOI: 10.1007/bf01178430
Google Scholar
[6]
D. Ravi Kumar, K. Swaminathan, Formability of two aluminium alloys, Materials Science and Technology. 15(1999) 1241-1252.
DOI: 10.1179/026708399101505347
Google Scholar
[7]
P. Ratchev, B. Verlinden, P. De Smet, Precipitation hardening of an Al–4. 2 wt% Mg–0. 6 wt% Cu alloy, Acta Materialia. 46(1998) 3523-3533.
DOI: 10.1016/s1359-6454(98)00033-0
Google Scholar
[8]
E. Romhanji, M. Popovic, D. Glisic, Effect of annealing temperature on the formability of Al–Mg4. 5–Cu0. 5 alloy sheets, Journal of Materials Processing Technology, 177(2006) 386-389.
DOI: 10.1016/j.jmatprotec.2006.04.036
Google Scholar
[9]
Y. Suzuki, M. Matsuo, M. Saga, Properties of bake hardenable Al–Mg–Cu alloy sheets, Materials Science Forum. 217-222(1996) 1789-1794.
DOI: 10.4028/www.scientific.net/msf.217-222.1789
Google Scholar
[10]
Z.P. Xing, S.B. Kang, H.W. Kim, Softening behavior of 8011 alloy produced by accumulative roll bonding process, Scripta Materiali. 45(2001) 597-604.
DOI: 10.1016/s1359-6462(01)01069-7
Google Scholar
[11]
S.H. Choi, J.K. Choi, H. W Kim, S.B. Kang, Effect of reduction ratio on annealing texture and r-value directionality for a cold-rolled Al–5% Mg alloy, Materials Science and Engineering A. 519(2009) 77-87.
DOI: 10.1016/j.msea.2009.05.063
Google Scholar
[12]
H.W. Kim, C.Y. Lim, Annealing of flexible-rolled Al–5. 5 wt%Mg alloy sheets for auto body application, Materials and Design. 31(2010) 571-575.
DOI: 10.1016/j.matdes.2009.12.018
Google Scholar
[13]
H.Y. Wu, G.Z. Zhou, Mechanical properties and formability of an Mg-6%Li-1%Zn alloy thin sheet at elevated temperatures, Journal of Materials Processing Technology. 206 (2008) 419-424.
DOI: 10.1016/j.jmatprotec.2007.12.045
Google Scholar
[14]
E. Romhanji, M. Popovic, D. Glisic, V. Milenkovic, Formability of a high-strength Al-Mg6. 8 type alloy sheet, Journal of Materials Science, 33(1998) 1037-1042.
DOI: 10.1023/a:1004328315442
Google Scholar
[15]
R. Narayanasamy, R. Ravindran, K. Manonmani,J. Satheesh, A crystallographic texture perspective formability investigation of aluminum 5052 alloy sheets at various annealing temperatures, Materials and Design. 30(2009) 1804-1817.
DOI: 10.1016/j.matdes.2008.09.011
Google Scholar
[16]
W. Wen, J. G Morris, An investigation of serrated yielding in 5000 series aluminum alloys, Materials Science and Engineering A. 354(2003) 279-285.
DOI: 10.1016/s0921-5093(03)00017-0
Google Scholar
[17]
H. Ait-Amokhtar, C. Fressengeas, Crossover from continuous to discontinuous propagation in the Portevin–Le Chatelier effect, Acta Materialia. 58(2010) 1342-1349.
DOI: 10.1016/j.actamat.2009.10.038
Google Scholar
[18]
H. Jiang, Q. Zhang,X. Wu, Spatiotemporal aspects of the Portevin–Le Chatelier effect in annealed and solution-treated aluminum alloys, Scripta Materialia. 54(2006) 2041-(2045).
DOI: 10.1016/j.scriptamat.2006.03.027
Google Scholar
[19]
J. Kang, R.K. Mishra, D.S. Wilkinson, Effect of Mg content on Portevin–Le Chatelier band strain in Al–Mg sheet alloys, Philosophical Magazine Letters, 92(2012) 647-655.
DOI: 10.1080/09500839.2012.714082
Google Scholar
[20]
R. Narayanasamy, C. Sathiyanarayanan, Forming limit diagram for interstitial free steels: part I, Materials Science and Engineering A. 399(2005) 292–307.
DOI: 10.1016/j.msea.2005.04.004
Google Scholar
[21]
GB/ T5028- 2008, Metallic materials-Sheet and strip-Determination of tensile strain hardening exponent.
DOI: 10.3403/30113992u
Google Scholar
[22]
GB/ T5027- 2007, Metallic materials-Sheet and strip-Determination of plastic strain ratio.
Google Scholar
[23]
D.K. Leu, Prediction of the limiting drawing ratio and the maximum drawing load in cup-drawing, International Journal of Machine Tools and Manufacture. 37(1997) 201-213.
DOI: 10.1016/0890-6955(95)00107-7
Google Scholar
[24]
Z. Zhu, M.J. Starink, Age hardening and softening in cold-rolled Al–Mg–Mn alloys with up to 0. 4wt%Cu, Materials Science and Engineering A. 489(2008) 138-149.
DOI: 10.1016/j.msea.2007.12.019
Google Scholar
[25]
G.G. Moore, J.F. Wallace, The effect of anisotropy on instability in sheet metal forming, Journal of the Institute of Metals, 93(1964-1965) 33.
Google Scholar
[26]
M.G. El-Sebaie, P.B. Mellor, Plastic instability conditions in the deep-drawing of a circular blank of sheet metal, International Journal of Mechanical Science. 14(1972) 535-540.
DOI: 10.1016/0020-7403(72)90055-0
Google Scholar
[27]
F. Chmelı́k, E. Pink, J. Król, Mechanisms of serrated flow in aluminium alloys with precipitates investigated by acoustic emission, Acta materialia. 46(1998) 4435-4442.
DOI: 10.1016/s1359-6454(98)00070-6
Google Scholar
[28]
J.M. Robinson, M.P. Shaw, Microstructural and mechanical influences on dynamic strain aging phenomena, International Materials Reviews. 39(1994) 113-122.
DOI: 10.1179/imr.1994.39.3.113
Google Scholar