Effect of Cu Content on the Formability and Portevin-Le Chatelier Effect of Al-Mg Alloys

Article Preview

Abstract:

Al-Mg alloys developed for auto body sheets with different Cu contents were fabricated in the laboratory scale. The effects of Cu content on the microstructures, formability and Portevin–Le Chatelier(PLC) effect of the alloys were investigated by polarizied optical microscopy and room temperature tensile testing. It has been found that with increasing Cu content, there was little change of the strain hardening exponent, but the plastic strain ratio and limiting drawing ratio increased firstly and then decreased. A quantitative statistical analysis of the characteristics of the PLC effect was made, including the stress drop and the reloading time, which follow a common linear relationship with plastic strain, and the increase rate of stress drop and reloading time was bigger with more Cu content. A detailed discussion of the corresponding mechanism of Cu and Cu-containing precipitates on the dynamic strain aging(DSA) was made.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-157

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.B. Burger, A.K. Gupta, P.W. Jeffrey, D.J. Lloyd, Microstructural control of aluminum sheet used in automotive applications, Materials Characterization, 35(1995) 23-39.

DOI: 10.1016/1044-5803(95)00065-8

Google Scholar

[2] G.S. Cole, A.M. Sherman, Lightweight materials for automotive applications, Materials Characterization. 35(1995) 3-9.

Google Scholar

[3] W. Wen, Y.M. Zhao, J.G. Morris, The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys. Materials Science and Engineering A. 392(2005) 136-144.

DOI: 10.1016/j.msea.2004.09.059

Google Scholar

[4] N.S. Lee, J.H. Chen, Anisotropic tensile ductility of cold-rolled and annealed aluminum alloy sheet and the beneficial effect of post-anneal rolling, Scripta Materialia. 60(2009) 340-343.

DOI: 10.1016/j.scriptamat.2008.10.036

Google Scholar

[5] H. Takuda, N. Yamazaki, N. Hatta, S. Kikuchi, Influence of cold-rolling and annealing conditions on formability of aluminium alloy sheet, Journal of Materials Sciences. 311(1995) 957-963.

DOI: 10.1007/bf01178430

Google Scholar

[6] D. Ravi Kumar, K. Swaminathan, Formability of two aluminium alloys, Materials Science and Technology. 15(1999) 1241-1252.

DOI: 10.1179/026708399101505347

Google Scholar

[7] P. Ratchev, B. Verlinden, P. De Smet, Precipitation hardening of an Al–4. 2 wt% Mg–0. 6 wt% Cu alloy, Acta Materialia. 46(1998) 3523-3533.

DOI: 10.1016/s1359-6454(98)00033-0

Google Scholar

[8] E. Romhanji, M. Popovic, D. Glisic, Effect of annealing temperature on the formability of Al–Mg4. 5–Cu0. 5 alloy sheets, Journal of Materials Processing Technology, 177(2006) 386-389.

DOI: 10.1016/j.jmatprotec.2006.04.036

Google Scholar

[9] Y. Suzuki, M. Matsuo, M. Saga, Properties of bake hardenable Al–Mg–Cu alloy sheets, Materials Science Forum. 217-222(1996) 1789-1794.

DOI: 10.4028/www.scientific.net/msf.217-222.1789

Google Scholar

[10] Z.P. Xing, S.B. Kang, H.W. Kim, Softening behavior of 8011 alloy produced by accumulative roll bonding process, Scripta Materiali. 45(2001) 597-604.

DOI: 10.1016/s1359-6462(01)01069-7

Google Scholar

[11] S.H. Choi, J.K. Choi, H. W Kim, S.B. Kang, Effect of reduction ratio on annealing texture and r-value directionality for a cold-rolled Al–5% Mg alloy, Materials Science and Engineering A. 519(2009) 77-87.

DOI: 10.1016/j.msea.2009.05.063

Google Scholar

[12] H.W. Kim, C.Y. Lim, Annealing of flexible-rolled Al–5. 5 wt%Mg alloy sheets for auto body application, Materials and Design. 31(2010) 571-575.

DOI: 10.1016/j.matdes.2009.12.018

Google Scholar

[13] H.Y. Wu, G.Z. Zhou, Mechanical properties and formability of an Mg-6%Li-1%Zn alloy thin sheet at elevated temperatures, Journal of Materials Processing Technology. 206 (2008) 419-424.

DOI: 10.1016/j.jmatprotec.2007.12.045

Google Scholar

[14] E. Romhanji, M. Popovic, D. Glisic, V. Milenkovic, Formability of a high-strength Al-Mg6. 8 type alloy sheet, Journal of Materials Science, 33(1998) 1037-1042.

DOI: 10.1023/a:1004328315442

Google Scholar

[15] R. Narayanasamy, R. Ravindran, K. Manonmani,J. Satheesh, A crystallographic texture perspective formability investigation of aluminum 5052 alloy sheets at various annealing temperatures, Materials and Design. 30(2009) 1804-1817.

DOI: 10.1016/j.matdes.2008.09.011

Google Scholar

[16] W. Wen, J. G Morris, An investigation of serrated yielding in 5000 series aluminum alloys, Materials Science and Engineering A. 354(2003) 279-285.

DOI: 10.1016/s0921-5093(03)00017-0

Google Scholar

[17] H. Ait-Amokhtar, C. Fressengeas, Crossover from continuous to discontinuous propagation in the Portevin–Le Chatelier effect, Acta Materialia. 58(2010) 1342-1349.

DOI: 10.1016/j.actamat.2009.10.038

Google Scholar

[18] H. Jiang, Q. Zhang,X. Wu, Spatiotemporal aspects of the Portevin–Le Chatelier effect in annealed and solution-treated aluminum alloys, Scripta Materialia. 54(2006) 2041-(2045).

DOI: 10.1016/j.scriptamat.2006.03.027

Google Scholar

[19] J. Kang, R.K. Mishra, D.S. Wilkinson, Effect of Mg content on Portevin–Le Chatelier band strain in Al–Mg sheet alloys, Philosophical Magazine Letters, 92(2012) 647-655.

DOI: 10.1080/09500839.2012.714082

Google Scholar

[20] R. Narayanasamy, C. Sathiyanarayanan, Forming limit diagram for interstitial free steels: part I, Materials Science and Engineering A. 399(2005) 292–307.

DOI: 10.1016/j.msea.2005.04.004

Google Scholar

[21] GB/ T5028- 2008, Metallic materials-Sheet and strip-Determination of tensile strain hardening exponent.

DOI: 10.3403/30113992u

Google Scholar

[22] GB/ T5027- 2007, Metallic materials-Sheet and strip-Determination of plastic strain ratio.

Google Scholar

[23] D.K. Leu, Prediction of the limiting drawing ratio and the maximum drawing load in cup-drawing, International Journal of Machine Tools and Manufacture. 37(1997) 201-213.

DOI: 10.1016/0890-6955(95)00107-7

Google Scholar

[24] Z. Zhu, M.J. Starink, Age hardening and softening in cold-rolled Al–Mg–Mn alloys with up to 0. 4wt%Cu, Materials Science and Engineering A. 489(2008) 138-149.

DOI: 10.1016/j.msea.2007.12.019

Google Scholar

[25] G.G. Moore, J.F. Wallace, The effect of anisotropy on instability in sheet metal forming, Journal of the Institute of Metals, 93(1964-1965) 33.

Google Scholar

[26] M.G. El-Sebaie, P.B. Mellor, Plastic instability conditions in the deep-drawing of a circular blank of sheet metal, International Journal of Mechanical Science. 14(1972) 535-540.

DOI: 10.1016/0020-7403(72)90055-0

Google Scholar

[27] F. Chmelı́k, E. Pink, J. Król, Mechanisms of serrated flow in aluminium alloys with precipitates investigated by acoustic emission, Acta materialia. 46(1998) 4435-4442.

DOI: 10.1016/s1359-6454(98)00070-6

Google Scholar

[28] J.M. Robinson, M.P. Shaw, Microstructural and mechanical influences on dynamic strain aging phenomena, International Materials Reviews. 39(1994) 113-122.

DOI: 10.1179/imr.1994.39.3.113

Google Scholar