Thermal Stability of Microstructure and Mechanical Properties of NbNhard Films

Article Preview

Abstract:

Cubic δ-NbNfilm with (200) texture, hexagonalδ′-NbN films with a mixed (100)+(110) texture and (110) texture have been deposited on Si (100) substrate at-40, -160 and-200Vsubstrate bias, respectively. Vacuum heat treatments were performed to investigate the effects of annealing temperature on structural stability and hardness of δ-NbN and δ′-NbN films. The results show that for δ-NbN film and δ′-NbN films with a strong (110) texture,no phase transition occuredafter heat treatments.But for δ′-NbN films with a mixed (100)+(110) texture, phase transition from δ′-NbN to δ-NbNtook place, which can be ascribed to small lattice mismatch between δ′-NbN (100) and δ-NbN (111) and low phase transition barrier. In addition, the high substrate bias can improve the interface adhesion due to interface mixing resulting from high energy ions bombardment. Even after annealing at 900°C, the hardness for δ′-NbN deposited at-200V still remains 32GPa, which shows a potential application at the field of protect coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Wang, H. Terai, A. Kawakami and Y. Uzawa: Appl. Phys. Lett. Vol. 75 (1999), p.701.

Google Scholar

[2] G. Goltsman,A. Korneev,V. Izbenko, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, A. Verevkin,J. Zhang, A. Pearlman, W. Slysz and R. Sobolewski: Nucl. Instrum. Methods Phys. Res. Sect. AVol. 520 (2004), p.527.

DOI: 10.1016/j.nima.2003.11.305

Google Scholar

[3] M. Benkahoul, E. Martinez, A. Karimi, R. Sanjinés andF. Lévy: Surf. Coat. Technol. Vol. 180 (2004), p.178.

Google Scholar

[4] Y. Gotoh, M. Nagao,T. Ura, H. Tsuji and J. Ishikawa: Nucl. Instr. and Meth. in Phys. Res. B Vol. 148 (1999), p.925.

Google Scholar

[5] P. Alén, M. Ritala, K. Arstila, J. Keinonen andM. Leskelä: Thin Solid Films Vol. 491(2005), p.235.

DOI: 10.1016/j.tsf.2005.06.015

Google Scholar

[6] V.N. Zhitomirsky, I. Grimberg,L. Rapoport N.A. Travitzky, R.L. Boxman, S. Goldsmith, A. Raihel,I. Lapsker and B.Z. Weiss: Thin Solid Films Vol. 326 (1998), p.134.

DOI: 10.1016/s0040-6090(98)00544-6

Google Scholar

[7] W. Lengauer, M. Bohn, B. Wollein andK. Lisak: Acta Mater. Vol. 48 (2000), p.2633.

Google Scholar

[8] K.S. Keskar,T. Yamashita, and Y. Onodera: Jap. J. Appl. Phys. Vol. 10 (1971), p.370.

Google Scholar

[9] C.S. Sandu, M. Benkahoul,M. Parlinska-Wojtan,R. Sanjines and F. Levy: Surf. Coat. Technol. Vol. 200 (2006), p.6544.

Google Scholar

[10] C.V. Thompson: Annu. Rev. Mater. Sci. Vol. 30 (2000), p.159.

Google Scholar

[11] M. Wen, C.Q. Hu, C. Wang,T. An, Y.D. Su, Q.N. Meng and W.T. Zheng: J. Appl. Phys. Vol. 104(2008), p.023527.

Google Scholar