Effect of Solute Atoms on the Thermal Property of Mg Alloys

Article Preview

Abstract:

The reason for the distinct difference in the thermal conductivities of different series of Mg alloys was investigated.The crystallographic lattice parameter and the thermal conductivity of Mg–Zn, Mg–Al, and Mg–Gd binary alloys, which all contain the same atomic percentage of the solutes were measured. The Mg–Zn alloys exhibited the highest thermal conductivity and the smallest lattice distortion, and Mg–Gd alloys exhibited lowest thermal conductivity and largest lattice distortion, respectively. Results indicate that the thermal conductivity of the Mg alloys depends on the difference in atomic radius of the solute and matrix atoms. Therefore, the reason for the Mg-7Gd-5Y-0.5Nd-0.5Zr alloy components have excellent thermal resistance is the serious lattice distortion caused by the significant difference in the atomic radius between the solute and matrix atoms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-324

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Liu, K. Zhang, X.Q. Zeng. The basic theory and application of magnesium alloys(China Machine Press, Beijing 2002).

Google Scholar

[2] A. Rudajevová, F.V. Buch, B.L. Mordikeb. J. Alloy Compd. Vol. 292 (1999), p.27–30.

Google Scholar

[3] C.J. Chen Q.D. Wang, D. D Yin. J. Alloy Compd. Vol. 487 (2009), p.560–563.

Google Scholar

[4] J.W. Yuan, K. Zhang, T. Li, et al. Anisotropy of thermal conductivity and mechanical properties in Mg–5Zn–1Mn alloy. Mater. Des. Vol. (2012), p.257–261.

DOI: 10.1016/j.matdes.2012.03.046

Google Scholar

[5] J.W. Yuan, K. Zhang, T. Li, et al. J. Alloy Compd. Vol. 578 (2013), p.32–36.

Google Scholar

[6] A. Rudajevová, P Lukácˇ. Mater. Sci. Eng. A. Vol. 397 (2005), p.16–21.

Google Scholar

[7] A. Rudajevová, M. Staneˇk. Mater. Sci. Eng. A. Vol. 341(2003),P. 152–157.

Google Scholar

[8] M. Yamasaki,Y. Kawamura. Scripta Mater. Vol. 60(2009), P. 264–267.

Google Scholar

[9] ASTM E 1461-1992, Test Method for Thermal Diffusivity of Solids by the Flash Method. American Society for Testing Material, (1992).

Google Scholar

[10] T. Li, Z.W. Du, K. Zhang, et al. J. Alloy Compd. Vol. 574 (2013), pp.174-180.

Google Scholar

[11] T. Li, Z.W. Du, K. Zhang, et al. J. Rare Earths. Vol. 31 (2013), pp.410-414.

Google Scholar

[12] J.W. Yuan, K. Zhang, X.G. Li, et al. Tran. Mater and heat treatment. Vol. 4 (2012) P. 27–32.

Google Scholar

[13] A. Paul, R. Llewellyn. Modern Physics. (W.H. Freeman Company, New York 2003).

Google Scholar

[14] K. Huang, R.Q. Han. Solid state physics. (Higher Education Press, Beijing1985).

Google Scholar

[15] Y. Terada, K. Ohkubo, T. Mohri, et al. J. Alloy. Compd. Vol. 285 (1999) p.233–237.

Google Scholar

[16] M.J. Peet, H.S. Hasan, H.K.D.H. Bhadeshia. International Journal of Heat and Mass Transfer. Vol. 54 (2011) p.2602–2608.

DOI: 10.1016/j.ijheatmasstransfer.2011.01.025

Google Scholar