Dendritic Growth Characteristics of Cu-Rich Zone within Phase Separated Fe50Cu50 Alloy

Article Preview

Abstract:

The undercooled Fe50Cu50 alloy experiences a metastable liquid phase separation and separates into a Fe-rich zone and a Cu-rich zone within the gravity field. The growth characteristics of the Cu-rich zone were investigated by the glass fluxing method, and the achieved undercooling range was 20−261 K. The volume fraction of the Cu-rich zone decreases with the enhancement of the bulk undercooling. The microstructural morphologies of the Cu-rich zone are similar at all the undercooling conditions, that is, αFe dendrites and particles are distributed inside (Cu) phase matrix. The secondary dendritic arm spacing of αFe dendrites decreases with the increase in bulk undercooling. The growth mechanism of αFe dendrites was analyzed by using the LKT/BCT dendritic growth theory. The dendritic growth in the Cu-rich zone is mainly controlled by solute diffusion so that the dendritic growth velocity is only several millimeters per second. Besides, the calculated results indicate that there is only inconspicuous solute trapping during the solidification of Cu-rich zone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-306

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Mao, C. Booth-Morrison, C.K. Sudbrack, G. Martin, D.N. Seidman, Kinetic pathways for phase separation: An atomic-scale study in Ni–Al–Cr alloys, Acta Mater. 60(2011) 1871-1888.

DOI: 10.1016/j.actamat.2011.10.046

Google Scholar

[2] L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L.J.P. Ament, N.B. Brookes, G.M. De Luca, M. Salluzzo, T. Schmitt, V.N. Strocov, G. Ghiringhelli, Magnetic excitations and phase separation in the underdoped La2-xSrxCuO4 superconductor measured by resonant inelastic X-ray scattering, Phys. Rev. Lett. 104(2010).

DOI: 10.1103/physrevlett.104.077002

Google Scholar

[3] C. Capdevila, M.K. Miller, G. Pimentel, J. Chao, Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe–Cr–Al alloy, Scripta Mater. 66(2011) 254-257.

DOI: 10.1016/j.scriptamat.2011.11.003

Google Scholar

[4] R. Erni, A.M. Abakumov, M.D. Rossell, D. Batuk, A.A. Tsirlin, G. Nénert, G. Van Tendeloo, Nanoscale phase separation in perovskites revisited, Nature Mater. 13(2014) 216-217.

DOI: 10.1038/nmat3865

Google Scholar

[5] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,T. Speck, Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles, Phys. Rev. Lett. 110(2013) 238301.

DOI: 10.1103/physrevlett.110.238301

Google Scholar

[6] I. Borgh, P. Hedström, A. Blomqvist, J. Ågren, J. Odqvist, Synthesis and phase separation of (Ti, Zr)C, Acta Mater. 66(2014) 209-218.

DOI: 10.1016/j.actamat.2013.11.074

Google Scholar

[7] B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy, Appl. Phys. Lett. 85(2004) 6353-6355.

DOI: 10.1063/1.1842360

Google Scholar

[8] W.L. Wang, Z.Q. Li, B. Wei, Macrosegregation pattern and microstructure feature of ternary Fe–Sn–Si immiscible alloy solidified under free fall condition, Acta Mater. 59(2011) 5482-5493.

DOI: 10.1016/j.actamat.2011.05.022

Google Scholar

[9] S. Curiotto, L. Battezzati, E. Johnson, M. Palumbo, N. Pryds, The liquid metastable miscibility gap in the Cu–Co–Fe system, J. Mater. Sci. 43(2008) 3253-3258.

DOI: 10.1007/s10853-008-2540-2

Google Scholar

[10] A.A. Dzhurakhalov, M. Hou, Equilibrium properties of binary and ternary metallic immiscible nanoclusters, Phys. Rev. B. 76(2007) 045429.

DOI: 10.1103/physrevb.76.045429

Google Scholar

[11] W.L. Wang, X.M. Zhang, L.H. Li, B. Wei, Dual solidification mechanisms of liquid ternary Fe-Cu-Sn alloy, Sci. China-Phys. Mech. Astron. 55(2012) 450-459.

DOI: 10.1007/s11433-012-4646-4

Google Scholar

[12] G. Abrasonis, G.J. Kovács, L. Ryves, M. Krause, A. Mucklich, F. Munnik, T.W.H. Oates, M.M.M. Bilek, W. Moller, Phase separation in carbon-nickel films during hyperthermal ion deposition, J. Appl. Phys. 105(2009) 083518.

DOI: 10.1063/1.3110187

Google Scholar

[13] S. Curiotto, N.H. Pryds, E. Johnson, L. Battezzati, Liquid-liquid phase separation and remixing in the Cu-Co system, Metall. Mater. Trans. A. 37(2006) 2361-2368.

DOI: 10.1007/bf02586210

Google Scholar

[14] S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia, B. Wei, A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy, Acta Mater. 69(2014) 355-364.

DOI: 10.1016/j.actamat.2013.12.009

Google Scholar

[15] J. Lipton, W. Kurz, R. Trivedi, Rapid dendrite growth in undercooled alloys, Acta Metall, 35(1987) 957-964.

DOI: 10.1016/0001-6160(87)90174-x

Google Scholar

[16] R. Trivedi, J. Lipton, W. Kurz, Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts, Acta Metall. 35(1987) 965-970.

DOI: 10.1016/0001-6160(87)90175-1

Google Scholar

[17] W.J. Yao, X.J. Han, B. Wei, Microstructural evolution during containerless rapid solidification of Ni–Mo eutectic alloys, J. Alloy Compd. 348(2003) 88-99.

DOI: 10.1016/s0925-8388(02)00803-4

Google Scholar

[18] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46(1992) 2727.

DOI: 10.1103/physrevb.46.2727

Google Scholar

[19] B.J. Lee, B.D. Wirth, J.H. Shim, J. Kwon, S.C. Kwon J.H. Hong, Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys, Phys. Rev. B. 71(2005) 184205.

DOI: 10.1103/physrevb.71.184205

Google Scholar

[20] B.J. Lee, M.I. Baskes, H. Kim, Y.K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B. 64(2001) 184102.

DOI: 10.1103/physrevb.64.184102

Google Scholar

[21] B.J. Lee, J.H. Shim, M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B. 68(2003) 144112.

DOI: 10.1103/physrevb.68.144112

Google Scholar

[22] C.D. Cao, X.Y. Lu, B. Wei, Solute Diffusion Controlled Dendritic Growth Under High Undercooling Conditions, Chin. Phys. Lett. 15(1998) 840.

DOI: 10.1088/0256-307x/15/11/021

Google Scholar

[23] H.P. Wang, W.J. Yao, B. Wei, Remarkable solute trapping within rapidly growing dendrites, Appl. Phys. Lett. 89(2006) 201905.

DOI: 10.1063/1.2387971

Google Scholar