[1]
Z. Mao, C. Booth-Morrison, C.K. Sudbrack, G. Martin, D.N. Seidman, Kinetic pathways for phase separation: An atomic-scale study in Ni–Al–Cr alloys, Acta Mater. 60(2011) 1871-1888.
DOI: 10.1016/j.actamat.2011.10.046
Google Scholar
[2]
L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L.J.P. Ament, N.B. Brookes, G.M. De Luca, M. Salluzzo, T. Schmitt, V.N. Strocov, G. Ghiringhelli, Magnetic excitations and phase separation in the underdoped La2-xSrxCuO4 superconductor measured by resonant inelastic X-ray scattering, Phys. Rev. Lett. 104(2010).
DOI: 10.1103/physrevlett.104.077002
Google Scholar
[3]
C. Capdevila, M.K. Miller, G. Pimentel, J. Chao, Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe–Cr–Al alloy, Scripta Mater. 66(2011) 254-257.
DOI: 10.1016/j.scriptamat.2011.11.003
Google Scholar
[4]
R. Erni, A.M. Abakumov, M.D. Rossell, D. Batuk, A.A. Tsirlin, G. Nénert, G. Van Tendeloo, Nanoscale phase separation in perovskites revisited, Nature Mater. 13(2014) 216-217.
DOI: 10.1038/nmat3865
Google Scholar
[5]
I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,T. Speck, Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles, Phys. Rev. Lett. 110(2013) 238301.
DOI: 10.1103/physrevlett.110.238301
Google Scholar
[6]
I. Borgh, P. Hedström, A. Blomqvist, J. Ågren, J. Odqvist, Synthesis and phase separation of (Ti, Zr)C, Acta Mater. 66(2014) 209-218.
DOI: 10.1016/j.actamat.2013.11.074
Google Scholar
[7]
B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy, Appl. Phys. Lett. 85(2004) 6353-6355.
DOI: 10.1063/1.1842360
Google Scholar
[8]
W.L. Wang, Z.Q. Li, B. Wei, Macrosegregation pattern and microstructure feature of ternary Fe–Sn–Si immiscible alloy solidified under free fall condition, Acta Mater. 59(2011) 5482-5493.
DOI: 10.1016/j.actamat.2011.05.022
Google Scholar
[9]
S. Curiotto, L. Battezzati, E. Johnson, M. Palumbo, N. Pryds, The liquid metastable miscibility gap in the Cu–Co–Fe system, J. Mater. Sci. 43(2008) 3253-3258.
DOI: 10.1007/s10853-008-2540-2
Google Scholar
[10]
A.A. Dzhurakhalov, M. Hou, Equilibrium properties of binary and ternary metallic immiscible nanoclusters, Phys. Rev. B. 76(2007) 045429.
DOI: 10.1103/physrevb.76.045429
Google Scholar
[11]
W.L. Wang, X.M. Zhang, L.H. Li, B. Wei, Dual solidification mechanisms of liquid ternary Fe-Cu-Sn alloy, Sci. China-Phys. Mech. Astron. 55(2012) 450-459.
DOI: 10.1007/s11433-012-4646-4
Google Scholar
[12]
G. Abrasonis, G.J. Kovács, L. Ryves, M. Krause, A. Mucklich, F. Munnik, T.W.H. Oates, M.M.M. Bilek, W. Moller, Phase separation in carbon-nickel films during hyperthermal ion deposition, J. Appl. Phys. 105(2009) 083518.
DOI: 10.1063/1.3110187
Google Scholar
[13]
S. Curiotto, N.H. Pryds, E. Johnson, L. Battezzati, Liquid-liquid phase separation and remixing in the Cu-Co system, Metall. Mater. Trans. A. 37(2006) 2361-2368.
DOI: 10.1007/bf02586210
Google Scholar
[14]
S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia, B. Wei, A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy, Acta Mater. 69(2014) 355-364.
DOI: 10.1016/j.actamat.2013.12.009
Google Scholar
[15]
J. Lipton, W. Kurz, R. Trivedi, Rapid dendrite growth in undercooled alloys, Acta Metall, 35(1987) 957-964.
DOI: 10.1016/0001-6160(87)90174-x
Google Scholar
[16]
R. Trivedi, J. Lipton, W. Kurz, Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts, Acta Metall. 35(1987) 965-970.
DOI: 10.1016/0001-6160(87)90175-1
Google Scholar
[17]
W.J. Yao, X.J. Han, B. Wei, Microstructural evolution during containerless rapid solidification of Ni–Mo eutectic alloys, J. Alloy Compd. 348(2003) 88-99.
DOI: 10.1016/s0925-8388(02)00803-4
Google Scholar
[18]
M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46(1992) 2727.
DOI: 10.1103/physrevb.46.2727
Google Scholar
[19]
B.J. Lee, B.D. Wirth, J.H. Shim, J. Kwon, S.C. Kwon J.H. Hong, Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys, Phys. Rev. B. 71(2005) 184205.
DOI: 10.1103/physrevb.71.184205
Google Scholar
[20]
B.J. Lee, M.I. Baskes, H. Kim, Y.K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B. 64(2001) 184102.
DOI: 10.1103/physrevb.64.184102
Google Scholar
[21]
B.J. Lee, J.H. Shim, M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B. 68(2003) 144112.
DOI: 10.1103/physrevb.68.144112
Google Scholar
[22]
C.D. Cao, X.Y. Lu, B. Wei, Solute Diffusion Controlled Dendritic Growth Under High Undercooling Conditions, Chin. Phys. Lett. 15(1998) 840.
DOI: 10.1088/0256-307x/15/11/021
Google Scholar
[23]
H.P. Wang, W.J. Yao, B. Wei, Remarkable solute trapping within rapidly growing dendrites, Appl. Phys. Lett. 89(2006) 201905.
DOI: 10.1063/1.2387971
Google Scholar