[1]
O. Sitdikov, T. Sakai, A. Goloborodko, et al. Effect of pass strain on grain refinement in 7475 Al alloy during hot multidirectional forging [J]. Materials Transactions, 2004, 45(7): 2232-2238.
DOI: 10.2320/matertrans.45.2232
Google Scholar
[2]
C. Desrayaud, S. Ringeval, S. Girard, et al. A novel high straining process for bulk materials—The development of a multipass forging system by compression along three axes [J]. Journal of Materials Processing Technology, 2006, 172: 152–158.
DOI: 10.1016/j.jmatprotec.2005.09.015
Google Scholar
[3]
A. Belyakov, W. Gao, H. Miura, et al. Strain-induced grain evolution in polycrystalline copper during warm deformation [J]. Metall Mater Trans A, 1998, 29: 2957-2962.
DOI: 10.1007/s11661-998-0203-1
Google Scholar
[4]
S. Zherebtsov, G. Salishchev, R. Galeyev, et al. Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation [J]. Materials Transactions, 2005, 46: 2020-(2026).
DOI: 10.2320/matertrans.46.2020
Google Scholar
[5]
S. Mironov, G. Salishchev, M. Myshlyaev, et al. Evolution of misorientation distribution during warm abc, forging of commercial-purity titanium [J]. Materials Science and Engineering A, 2006, 418: 257-262.
DOI: 10.1016/j.msea.2005.11.026
Google Scholar
[6]
Y. Nakao, H. Miura, Nano-grain evolution in austenitic stainless steel during multi-directional forging [J]. Materials Science and Engineering A, 2011, 528: 1310-1317.
DOI: 10.1016/j.msea.2010.10.018
Google Scholar
[7]
R. Didomizio, M. F. Gigliotti, J. S. Marte, et al. Evolution of a Ni-20Cr alloy processed by multi-axis forging [J]. Materials Science Forum, 2006, 503-504: 793-798.
DOI: 10.4028/www.scientific.net/msf.503-504.793
Google Scholar
[8]
O. Sitdikov, T. Sakai, A. Goloboradko, et al. Grian fragmentation in a coarse-grained 7475 Al alloy during hot deformation [J]. Scripta Materialia, 2004, 51: 175-179.
DOI: 10.1016/j.scriptamat.2004.02.034
Google Scholar
[9]
ZHU Qingfeng,LI Lei, BAN Chunyan, et al. The limits of refinement and structure uniformity of high purity aluminum during the multi-directional forging process in room temperature [J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 1301-1305.
DOI: 10.1016/s1003-6326(14)63192-7
Google Scholar
[10]
ZHU Qingfeng, ZHAO Zhihao, ZUO Yubo, LI Lei, CUI Jianzhong. The structure evolution of a 99. 995 percent high purity aluminum duringmulti-forging process in room temperature, Materials Science Forum [J], 2014. 794-796: 876-881.
DOI: 10.4028/www.scientific.net/msf.794-796.876
Google Scholar
[11]
J. Xing, H. Soda, X. Y. Yang, et al. Ultra-fine grain development in an AZ31 magnesium alloy during multi-directional forging under decreasing temperature conditions [J]. Materials Transactions, 2005, 46: 1646-1650.
DOI: 10.2320/matertrans.46.1646
Google Scholar
[12]
GUO Qiang, YAN Hongge, CHEN Zhenhua, et al. Effect of Multiple Forging Process on the Microstructure and Properties of Magnesium Alloy [J]. Acta Metallurgica Sinica, 2006, 42(7): 739-743.
Google Scholar