[1]
A. Ohno, I. Motege. Solidification Technology in the Foundry and Casthouse(The Metals Society, London, 1983).
Google Scholar
[2]
T. Chandrashekar, M. K. Muralidhara, K. T. Kashyap, P. Raghothama Rao, Effect of growth restricting factor on grain refinement of aluminum alloys, Int J Adv Manuf Technol. 40 (2009), 234-241.
DOI: 10.1007/s00170-007-1336-x
Google Scholar
[3]
D.H. StJohn, M. Qian, M.A. Easton, P. Cao, The Interdependence Theory: The relationship between grain formation and nucleant selection, Acta. Mater. 59(2011), 4907-4921.
DOI: 10.1016/j.actamat.2011.04.035
Google Scholar
[4]
G.P. Jones, J. Pearson, Factors affecting grain refinement of aluminum using titanium and boron additives, Metall. Trans. B 7B(1976), 223-234.
DOI: 10.1007/bf02654921
Google Scholar
[5]
T.M. Wang, H.W. Fu, Z.N. Chen, J. Xu, J. Zhu, F. Cao, T.J. Li, A novel fading-resistant Al–3Ti–3B grain refiner for Al–Si alloys, J. Alloys. Compd. 511(2012), 45-49.
DOI: 10.1016/j.jallcom.2011.09.009
Google Scholar
[6]
T. E. Quested, Understanding mechanisms of grain refinement of aluminum alloys by inoculation, Mater. Sci. Technol. 20(2004), 1357-1369.
DOI: 10.1179/026708304225022359
Google Scholar
[7]
P.S. Mohanty, J.E. Gruzleski, Mechanisms of grain refinement in aluminum, Acta. Metall. Mater. 40(1995), 2001-(2012).
Google Scholar
[8]
R. Gerloff, W. Heyroth, W. Reif, U. Schmidt, T. Wang, The agglomeration of the TiB2-phase which has been added to molten aluminium for the grain refinement, Metall. Germany 50(1996) 97-101.
Google Scholar
[9]
M. A. Kearns, S. R. Thistlethwaite, P. S. Cooper, Recent advances in understanding the mechanism of aluminium grain refinement by TiBAl master alloys, TMS Light Metals. (1996) 713-720.
Google Scholar
[10]
T.H. Wang, M.H. Guo, S.L. Chen, C. L, Liao. On the fade of grain refinement of aluminum and aluminum alloys by the Al-Ti-B grain refiners, TMS Light Metals. (1998) 969-975.
DOI: 10.1002/9781119274780.ch32
Google Scholar
[11]
C. Vives, Hydrodynamic, thermal and crystallographical effects of an electromagnetically driven rotating flow in solidifying aluminium alloy melts, Int. J . Heat. Mass. Tran 33(1990) 2585-2598.
DOI: 10.1016/0017-9310(90)90194-y
Google Scholar
[12]
J. K. Roplekar, J.A. Dantzig, Study of Solidification with a Rotating Magnetic Field, Int. J. Cas. t Metal. Res. 14 (2001) 79-95.
Google Scholar
[13]
B. Willers, S. Eckert, U. Michel, I. Haase, G. Zouhar, The columnar-to-equiaxed transition in Pb–Sn alloys affected by electromagnetically driven convection, Mater. Sci. Eng. A. 402 (2005) 55-65.
DOI: 10.1016/j.msea.2005.03.108
Google Scholar
[14]
S. Steinbach, L. Ratke, The effect of rotating magnetic fields on the microstructure of directionally solidified Al–Si–Mg alloys, Mater. Sci. Eng. A. 413-414 (2005) 200 -204.
DOI: 10.1016/j.msea.2005.09.010
Google Scholar
[15]
J. Szajnar, T. Wròbel, Inoculation of pure aluminum with an electromagnetic field, J. Manuf. Process. 10 (2008) 74-81.
Google Scholar
[16]
C. Vives, Electromagnetic refining of aluminum-alloys by the CREM process, Metall. Trans. B 20 (1989) 623-629.
DOI: 10.1007/bf02655919
Google Scholar