Modeling and Simulation of Influence of Solidification Velocity on the Structure of Porous Copper and Aluminum

Article Preview

Abstract:

In this article, a three-dimensional time-dependent model describing the evolution of single pore during the solid/gas eutectic unidirectional solidification process (also called gasar process) was established. The mass transfer, bubble nucleation, pore growth and interruption were all considered in this model. The pore structure of lotus-type porous copper and aluminum were simulated under different solidification velocities. The results indicate that: coupled growth of both solid and gas phases can be achieved in a proper range of solidification velocities. The solidification velocity for Cu-H2 system is dozens of that for Al-H2 system when the pore diameter is similar to each other. The differences of the solute distribution coefficient (k0), diffusion coefficient (DL) and the constant of solubility of hydrogen (ξ(Tm)) in the melt are regarded as the main reasons of the big discrepancy of solidification velocity between Cu-H2 and Al-H2 systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

433-438

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.I. Shapovalov, U.S. Patent 5, 181, 549. (1993).

Google Scholar

[2] H. Nakajima: Prog. Mater. Sci. Vol. 52 (2007), p.1091.

Google Scholar

[3] S.K. Hyun, H. Nakajima: Mater. Sci. Eng. A Vol. 340 (2003), p.258.

Google Scholar

[4] H.W. Zhang, L.T. Chen, Y. Liu, Y.X. Li: Int. J. Heat Mass Transfer Vol. 56 (2013), p.172.

Google Scholar

[5] J. Banhart: Prog. Mater. Sci. Vol. 46 (2001), p.559.

Google Scholar

[6] X.H. Liu, X.F. Liu, Y.B. Jiang, J.X. Xie: Proc. Eng. Vol. 27 (2012), p.490.

Google Scholar

[7] H.W. Zhang, Y.X. Li, Y. Liu. Acta Metall. Sin. Vol. 42 (2006), p.1165.

Google Scholar

[8] J.S. Park, S.K. Hyun, S. Suzuki, H. Nakajima: Acta Mater. Vol. 55 (2007), p.5646.

Google Scholar

[9] T. Ide, Y. Iio, H. Nakajima: Metal. Mater. Trans. A Vol. 43A (2012), p.5140.

Google Scholar

[10] L. Drenchev, J. Sobczak, S. Malinov, W. Sha: Modell. Simul. Mater. Sci. Eng. Vol. 14 (2006), p.663.

DOI: 10.1088/0965-0393/14/4/009

Google Scholar

[11] W. Kurz, D.J. Fisher: Fundamental of Solidification (Trans Tech Publications, Switzerland 1998).

Google Scholar

[12] H.W. Zhang, Y.X. Li: Acta Phys. Sin. Vol. 56 (2007), p.4864.

Google Scholar

[13] Y. Liu, Y.X. Li: Scripta Mater. Vol. 49 (2003), p.379.

Google Scholar

[14] Z.J. Li, Q.L. Jin, T.W. Yang, Y.H. Jiang, R. Zhou: Acta Metall. Sin. Vol. 49 (2013), p.757.

Google Scholar

[15] G.Y. An: Casting Formation Theory (Trans Tech Publications, Beijing 1990).

Google Scholar

[16] K.I. Vashchenko, D.F. Chernega, G.A. Remizov, O. M Byalik: Izv. Vyssh. Uch. Zav. Khim. Khim. T. Vol. 15 (1972), p.50.

Google Scholar

[17] B.J. Keene: Inter. Mater. Rev. Vol. 38 (1993), p.157.

Google Scholar

[18] N. Eustathopoulos: Inter. Metals Rev. Vol. 28 (1983), p.189.

Google Scholar

[19] H.W. Zhang, Y.X. Li, Y. Liu: Acta Metall. Sin. Vol. 43 (2007), p.113.

Google Scholar