Dynamic Recrystallization Behavior of a New Lead-Free Machinable Brass during Hot Deformation

Article Preview

Abstract:

The dynamic recrystallization (DRX) behavior of the new lead-free machinable brass was investigated by compression tests on a Gleeble-1500 thermal mechanics simulator in the temperatures range of 823-973 K and strain rates ranging from 0.01 to 1 s-1. On the basis of the hot compression data, critical stress (strain) or peak stress (strain) were determined with the assistance of the strain hardening rate versus stress curves. The dynamic recrystallization kinetics model of the lead-free machinable brass was established to evaluate the DRX behavior. The results will be beneficial to optimizing hot working processes of this new lead-free machinable brass.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

444-448

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Chen, A. Hu, M. Li, D. Mao, Study on the properties of Sn-9Zn-xCr lead-free solder, J. Alloys. Compd. 460(2008) 478-484.

DOI: 10.1016/j.jallcom.2007.05.087

Google Scholar

[2] Y.W. Jang, S.S. Kim, S.Z. Han, Effect of Misch metal on elevated temperature tensile ductility of the Cu-Zn-Bi alloy metal, Mater. Trans. A 36(2005) 1060-1065.

DOI: 10.1007/s11661-005-0300-3

Google Scholar

[3] L.R. Xiao, X.P. Shu, D.Q. Yi, X.M. Zhang, J.L. Qin, J.R. Hu, Microstructure and properties of unleaded free-cutting brass containing stibium, Trans. Nonferrous Met. Soc. China 17(2007) 1055-1059.

Google Scholar

[4] H. Mei, P.Q. Dai, W.Z. Chen, Y.L. Chen, Microstructure and properties of free cutting Pb-free Mg-Ca brass, Foundry Technol. 32(2011) 1539-1542.

Google Scholar

[5] D. Nath, A.K. Gupta, P.K. Rohatgi, Extrusion of lead-free cast copper alloy-graphite particle composite, J. Mater. Sci. Lett. 16(1997) 1595-1596.

Google Scholar

[6] S.J. You, Y.S. Choi, J.G. Kim, H.J. Oh, C.S. Chi, Stress corrosion cracking properties of environmentally friendly unleaded brasses containing bismuth in Mattsson's solution, Mater. Sci. Eng. A 345(2003) 207-214.

DOI: 10.1016/s0921-5093(02)00467-7

Google Scholar

[7] H. Atsumi, H. Imai, S.F. Li, K. Kondoh, Y. Kousaka, A. Kojima, High-strength, lead-free machinable α-β duplex phase brass Cu-40Zn-Cr-Fe-Sn-Bi alloys, Mater. Sci. Eng. A 529(2011) 275-281.

DOI: 10.1016/j.msea.2011.09.029

Google Scholar

[8] N. Christoph, K. Fritz, L. Dieter, W. Sebastian, Machinability enhancement of lead-free brass alloys, Procedia CIRP 14(2014) 95-100.

DOI: 10.1016/j.procir.2014.03.018

Google Scholar

[9] H.J. McQueen, N.D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A 322(2002) 43-63.

Google Scholar

[10] A. Momeni, H. Arabi, A. Rezaei, H. Badri, S.M. Abbasi, Hot deformation behavior of austenite in HSLA-100 microalloyed steel, Mater. Sci. Eng. A 528(2011) 2158-2163.

DOI: 10.1016/j.msea.2010.11.062

Google Scholar

[11] J. Wang, H. Xiao, H.B. Xie, X.M. Xu, Y.N. Gao, Study on hot deformation behavior of carbon structural steel with flow stress, Mater. Sci. Eng. A 539(2012) 294-300.

DOI: 10.1016/j.msea.2012.01.097

Google Scholar