Influence of Magnetic Field on the Microstructure and Properties of Cu-Ag-Zr Alloy

Article Preview

Abstract:

Cu-Ag-Zr alloy is a newly developed copper alloy material with an excellent combination of high mechanical strength and high electrical conductivity. Magnetic field was used in the solidification of Cu-Ag-Zr alloy. The results showed that with the application of magnetic field, formerly coarse columnar grain turned into homogeneous equiaxed grain. After aging, the precipitate of Zr had an increment and became more refined due to the reduction of segregation. The tensile strength and microhardness of Cu-0.1Ag-0.3Zr alloy under magnetic field of 15 mT increased by 17% and 10%, respectively. The electrical conductivity, with a slight decrease, was still as high as 92.4 %IACS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

460-465

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. He and R. Manory: Wear Vol. 249 (2001), p.626.

Google Scholar

[2] S. Kubo and K. Kato: Wear Vol. 216 (1998), p.172.

Google Scholar

[3] H. Nagasawa and K. Kato: Wear Vol. 216 (1998), p.179.

Google Scholar

[4] Q. Liu, X. Zhang, Y. Ge, J. Wang and J.Z. Cui: Metall. Mater. Tran. A Vol. 37 (2006), p.3233–3238.

Google Scholar

[5] S.G. Jia, P. Liu, F.Z. Ren, B.H. Tian, M.S. Zheng, G.S. Zhou, Mater. Sci. Eng. A 398 (2005) 262.

Google Scholar

[6] D. L. Zhang, K. Mihara, and E. Takakura: Mater. Sci. Eng. A Vol. 266 (1999), p.99.

Google Scholar

[7] K. Song, J. Xing, Q. Dong, and P. Liu: Mater. Sci. Eng. A Vol. 380 (2004), p.117.

Google Scholar

[8] S.G. Jia, P. Liu, J. Funct. Mater. 4 (2004) 445–448.

Google Scholar

[9] S.G. Jia, X.M. Ning, P. Liu, M.S. Zheng, G.S. Zhou, Met. Mater. Int. 15 (2009) 555–558.

Google Scholar

[10] S.G. Jia, M.S. Zheng, P. Liu, F.Z. Ren, B.H. Tian, G.S. Zhou and H.F. Lou: Mater. Sci. Eng. A Vol. 419 (2006), p.8.

Google Scholar

[11] V.V. Sosnin and I.G. Yastrebov: Metal Sci. Heat Treat. Vol. 16 (1974), p.626.

Google Scholar

[12] T.H. Kim and J.K. Park: Mater. Sci. Technol. Vol. 29 (2013), p.1414.

Google Scholar

[13] M. Akiyama, Y. Neishi and Y. Adachi: Eng. Computation Vol. 20 (2003), p.499.

Google Scholar

[14] M. Goto, K. Kamil, S.Z. Han, K. Euh, S.S. Kim and J. Lee: Int. J. Fatigue Vol. 51 (2013), p.57.

Google Scholar

[15] C.C.F. Kwan and Z.R. Wang: Philos. Mag. Vol. 93 (2013), p.1065.

Google Scholar

[16] X. Zhang, D.L. Wang, S.X. Zhang, Y.W. Ma, W.S. Yang, Y. Wang, S. Awaji and K. Watanabe: J. Magn. Magn. Mater. Vol. 322 (2010), p.302.

Google Scholar

[17] T.J. Li, Z.Q. Cao, J.Z. Jin, and Z.F. Zhang: Mater. Trans. JIM Vol. 42 (2001), p.281.

Google Scholar

[18] W.Z. Jin, F.D. Bai, T.J. Li, and G.M. Yin: Mater. Lett. Vol. 62 (2008), p.1585.

Google Scholar

[19] C. Vives: Metall. Mater. Trans. B. Vol. 20 (1989), p.623.

Google Scholar

[20] S. Eckert, P. A. Nikrityuk, B. Willers, D. Rabiger, N. Shevchenko, H. Neumann-Heyme, V. Travnikov, S. Odenbach, A. Voigt and K. Eckert: Eur. Phys. J. Special Topics Vol. 220 (2013), p.123.

DOI: 10.1140/epjst/e2013-01802-7

Google Scholar

[21] J. Stiller, K. Koal, W.E. Nagel and J. Pal, A. Cramer: Eur. Phys. J. Special Topics Vol. 220 (2013), p.111.

Google Scholar

[22] C. Beckermann: JOM Vol. 3 (1997), p.13.

Google Scholar

[23] R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman, Prog: Mater. Sci. Vol. 53 (2008), p.421.

Google Scholar

[24] J.Z. Cui: Trans. Nonferrous Met. Soc. Chin. Vol. 13 (2003), p.473.

Google Scholar

[25] J.L. Xu and S.X. Jin: Plasma Physics, Atom Energy Press, Beijing (1998).

Google Scholar

[26] J. Li, T. Wang, J. Xu, Z. Yan, J. Sun, J. Xu, Z. Cao and T. Li: Mater. Sci. Technol. Vol. 27 (2011), p.676.

Google Scholar

[27] H. Kimura, A. Inoue, N. Muramatsu, K. Shin and T. Yamamoto: Mater. Trans. Vol. 47 (2006), p.1874.

Google Scholar

[28] H.Y. Gao, J. Wang, D. Shu and B.D. Sun: Scr. Mater. Vol. 54 (2006), p. (1931).

Google Scholar