Microstructure, Corrosion and Wear Resistance of Co-Ni-ZrO2 Composite Coating

Article Preview

Abstract:

Co-Ni alloy and ZrO2 submicron particles were successfully co-deposited on carbon steel substrate by direct current electrolytic deposition. The micromorphology, constituent, microhardness, corrosion and wear resistance of the composite coatings were tested, respectively. The results show that the embedded submicron ZrO2 particles are uniformly distributed in the entire Co-Ni matrix and the coating showed a good adhesion to the substrate. The hardness, friction coefficient, wear loss, and electrode voltage of Co-Ni alloy coating were 356 HV, 0.8, 1.901×10-2 mg/m, and-0.47 V, respectively, while those of Co-Ni-ZrO2 composite coating were 413 HV, 0.6, 1.174×10-2 mg/m, and-0.37 V, respectively. The data above suggested that Co-Ni-ZrO2 composite coating possesses higher microhardness, better wear and corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

449-453

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Malathy Pushpavanam, H. Manikandan, K. Ramanathan. Preparation and characterization of nickel-cobalt-diamond electro-composites by sediment co-deposition. Surf. Coat. Technol. 201 (2007) 6372-6379.

DOI: 10.1016/j.surfcoat.2006.12.004

Google Scholar

[2] Lidia Benea. Electrodeposition and tribocorrosion behaviour of ZrO2-Ni composite coatings. J Appl Electrochem. 39 (2009): 1671-1681.

DOI: 10.1007/s10800-009-9859-5

Google Scholar

[3] Meenu Srivastava, V.K. William Grips, K.S. Rajam. Influence of SiC, Si3N4 and Al2O3 particles on the structure and properties of electrodeposited Ni. Mater. Lett. 62 (2008) 3487-3489.

DOI: 10.1016/j.matlet.2008.03.008

Google Scholar

[4] A. Zoikis-Karathanasis, E.A. Pavlatou, N. Spyrellis. The effect of heat treatment on the structure and hardness of pulse electrodeposited NiP-WC composite coatings. Electrochim. Acta. 54 (2009) 2563-2570.

DOI: 10.1016/j.electacta.2008.07.027

Google Scholar

[5] Y.J. Xue, H.B. Liu, M.M. Lan, J.S. Li, H. Li. Effect of different electrodeposition methods on oxidation resistance of Ni-CeO2 nanocomposite coating. Surf. Coat. Technol. 204 (2010) 3539-3545.

DOI: 10.1016/j.surfcoat.2010.04.009

Google Scholar

[6] M.F. Cardinal, P.A. Castro, J. Baxi, H. Liang, F.J. Williams. Characterization and frictional behavior of nanostructured Ni-W-MoS2 composite coatings. Surf. Coat. Technol. 204 (2009) 85-90.

DOI: 10.1016/j.surfcoat.2009.06.037

Google Scholar

[7] S.Y. Zhang, Q. Li, X.K. Yang, X.K. Zhong, Y. Dai, F. Luo. Corrosion resistance of AZ91D magnesium alloy with electroless plating pretreatment and Ni-TiO2 composite coating. Mater Charact. 61 (2010) 269-276.

DOI: 10.1016/j.matchar.2009.10.006

Google Scholar

[8] A. Araghi, M.H. Paydar. Electroless deposition of Ni-P-B4C composite coating on AZ91D magnesium alloy and investigation on its wear and corrosion resistance. Mater. Des. 31 (2010) 3095-3099.

DOI: 10.1016/j.matdes.2009.12.042

Google Scholar

[9] Y.T. Wu, H.Z. Liu, B. Shen, L. Liu, W.B. Hu. The friction and wear of electroless Ni-P matrix with PTFE and/or SiC particles composite. Tribol. Int. 39 (2006) 553-559.

DOI: 10.1016/j.triboint.2005.04.032

Google Scholar

[10] J.H. Yuan, Y.C. Zhu, X.B. Zheng, H. Ji, T. Yang. Fabrication and evaluation of atmospheric plasma sprayingWC-Co-Cu-MoS2 composite coatings. J. Alloys Compd. 509 (2011) 2576-2581.

DOI: 10.1016/j.jallcom.2010.11.093

Google Scholar

[11] G. Garcés, P. Pérez, P. Adeva. Thermal stability of metastable Mg-30%Ti-2%Al- 0. 9%Mn(wt. %) alloy synthesised by PVD. J. Alloys Compd. 387 (2005) 115-120.

DOI: 10.1016/j.jallcom.2004.06.029

Google Scholar

[12] J.M. Miguel, J.M. Guilemany, S. Dosta. Effect of the spraying process on the microstructure and tribological properties of bronze-alumina composite coatings. Surf. Coat. Technol. 205 (2010) 2184-2190.

DOI: 10.1016/j.surfcoat.2010.08.150

Google Scholar

[13] A.N. Correia, S.A.S. Machado. Electrodeposition and characterisation of thin layers of Ni-Co alloys obtained from dilute chloride baths. Electrochim. Acta 45 (2000) 1733-1740.

DOI: 10.1016/s0013-4686(99)00405-3

Google Scholar

[14] D. Golodnitsky, Yu. Rosenberg, A. Ulus. The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte. Electrochim. Acta 47 (2002) 2707-2714.

DOI: 10.1016/s0013-4686(02)00135-4

Google Scholar

[15] L. Burzynska, E. Rudnik. The influence of electrolysis parameters on the composition and morphology of Co-Ni alloys. Hydrometallurgy. 54 (2000) 133-149.

DOI: 10.1016/s0304-386x(99)00060-2

Google Scholar