[1]
Malathy Pushpavanam, H. Manikandan, K. Ramanathan. Preparation and characterization of nickel-cobalt-diamond electro-composites by sediment co-deposition. Surf. Coat. Technol. 201 (2007) 6372-6379.
DOI: 10.1016/j.surfcoat.2006.12.004
Google Scholar
[2]
Lidia Benea. Electrodeposition and tribocorrosion behaviour of ZrO2-Ni composite coatings. J Appl Electrochem. 39 (2009): 1671-1681.
DOI: 10.1007/s10800-009-9859-5
Google Scholar
[3]
Meenu Srivastava, V.K. William Grips, K.S. Rajam. Influence of SiC, Si3N4 and Al2O3 particles on the structure and properties of electrodeposited Ni. Mater. Lett. 62 (2008) 3487-3489.
DOI: 10.1016/j.matlet.2008.03.008
Google Scholar
[4]
A. Zoikis-Karathanasis, E.A. Pavlatou, N. Spyrellis. The effect of heat treatment on the structure and hardness of pulse electrodeposited NiP-WC composite coatings. Electrochim. Acta. 54 (2009) 2563-2570.
DOI: 10.1016/j.electacta.2008.07.027
Google Scholar
[5]
Y.J. Xue, H.B. Liu, M.M. Lan, J.S. Li, H. Li. Effect of different electrodeposition methods on oxidation resistance of Ni-CeO2 nanocomposite coating. Surf. Coat. Technol. 204 (2010) 3539-3545.
DOI: 10.1016/j.surfcoat.2010.04.009
Google Scholar
[6]
M.F. Cardinal, P.A. Castro, J. Baxi, H. Liang, F.J. Williams. Characterization and frictional behavior of nanostructured Ni-W-MoS2 composite coatings. Surf. Coat. Technol. 204 (2009) 85-90.
DOI: 10.1016/j.surfcoat.2009.06.037
Google Scholar
[7]
S.Y. Zhang, Q. Li, X.K. Yang, X.K. Zhong, Y. Dai, F. Luo. Corrosion resistance of AZ91D magnesium alloy with electroless plating pretreatment and Ni-TiO2 composite coating. Mater Charact. 61 (2010) 269-276.
DOI: 10.1016/j.matchar.2009.10.006
Google Scholar
[8]
A. Araghi, M.H. Paydar. Electroless deposition of Ni-P-B4C composite coating on AZ91D magnesium alloy and investigation on its wear and corrosion resistance. Mater. Des. 31 (2010) 3095-3099.
DOI: 10.1016/j.matdes.2009.12.042
Google Scholar
[9]
Y.T. Wu, H.Z. Liu, B. Shen, L. Liu, W.B. Hu. The friction and wear of electroless Ni-P matrix with PTFE and/or SiC particles composite. Tribol. Int. 39 (2006) 553-559.
DOI: 10.1016/j.triboint.2005.04.032
Google Scholar
[10]
J.H. Yuan, Y.C. Zhu, X.B. Zheng, H. Ji, T. Yang. Fabrication and evaluation of atmospheric plasma sprayingWC-Co-Cu-MoS2 composite coatings. J. Alloys Compd. 509 (2011) 2576-2581.
DOI: 10.1016/j.jallcom.2010.11.093
Google Scholar
[11]
G. Garcés, P. Pérez, P. Adeva. Thermal stability of metastable Mg-30%Ti-2%Al- 0. 9%Mn(wt. %) alloy synthesised by PVD. J. Alloys Compd. 387 (2005) 115-120.
DOI: 10.1016/j.jallcom.2004.06.029
Google Scholar
[12]
J.M. Miguel, J.M. Guilemany, S. Dosta. Effect of the spraying process on the microstructure and tribological properties of bronze-alumina composite coatings. Surf. Coat. Technol. 205 (2010) 2184-2190.
DOI: 10.1016/j.surfcoat.2010.08.150
Google Scholar
[13]
A.N. Correia, S.A.S. Machado. Electrodeposition and characterisation of thin layers of Ni-Co alloys obtained from dilute chloride baths. Electrochim. Acta 45 (2000) 1733-1740.
DOI: 10.1016/s0013-4686(99)00405-3
Google Scholar
[14]
D. Golodnitsky, Yu. Rosenberg, A. Ulus. The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte. Electrochim. Acta 47 (2002) 2707-2714.
DOI: 10.1016/s0013-4686(02)00135-4
Google Scholar
[15]
L. Burzynska, E. Rudnik. The influence of electrolysis parameters on the composition and morphology of Co-Ni alloys. Hydrometallurgy. 54 (2000) 133-149.
DOI: 10.1016/s0304-386x(99)00060-2
Google Scholar