[1]
Kawamoto, H. (2008). Research and Development Trends in Solid Oxide Fuel Cell Materials. Science and Technology Trends.
Google Scholar
[2]
Ishihara, T., Matsuda, H., & Takita, Y. (1994). Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. J. Am. Chem. Soc, 116 3801-3803.
DOI: 10.1021/ja00088a016
Google Scholar
[3]
Lybye, D., Poulsen, F. W., & Mogensen, M. (2000). Conductivity of A- and B- site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskite. Solid State Ionic, 128 91-103.
DOI: 10.1016/s0167-2738(99)00337-9
Google Scholar
[4]
Esaka, T., & Abdullah S.S.B.C. (2010). Oxide ion conduction in the perovskite-type LaYO3 doped with ZrO2. Electrochemistry, 78, issue 11 907-911.
DOI: 10.5796/electrochemistry.78.907
Google Scholar
[5]
Wenk, H. & Bulakh, A. (2004). Minerals: Their Constitution and Origin. New York, NY: Cambridge University Press. ISBN 978-0-521-52958-7.
Google Scholar
[6]
Bhalla, A.S., Guo, R., Roy, R. (2000) The Perovskite Structure: A Review of Its Role in Ceramic Science and Technology. Mat. Res. Innovat. 4 3-26.
Google Scholar
[7]
Andrievskaya, E. R., Lopato, L. M., Ragulya, A. V., Red'ko, V. P. (1999). The system ZrO2–Y2O3–La2O3 and prospective materials on its basis. CIMTEC'98: Getting into 2000. Part A: Techna Srl. 109–16.
Google Scholar
[8]
Bell, R. J., Millar, G. J., Drennan, J. (2000) Influence of synthesis route on the catalytic properties of La1−xSrxMnO3. Solid State Ionics 131 211–220.
DOI: 10.1016/s0167-2738(00)00668-8
Google Scholar
[9]
Gaudon, M., Laberty-Robert, C., Ansart, F., Stevens, P., Rousset, A. (2002) Preparation and characterization of La1–xSrxMnO3+δ (0≤x ≤0. 6) powder by sol–gel processing. Solid State Sci. 4 125–133.
DOI: 10.1016/s1293-2558(01)01208-0
Google Scholar
[10]
Xu, Q., Huang, D., Chen, W., Lee, J., Wang, H., Yuan, R. Z. (2004).
Google Scholar
[11]
Conceição, L., Silva, A. M., Ribeiro, N. F. P., Souza, M. M. V. M. (2011) Combustion synthesis of La0. 7Sr0. 3Co0. 5Fe0. 5O3 (LSCF) porous materials for application as cathode in IT-SOFC. Materials Research Bulletin 46 308–314.
DOI: 10.1016/j.materresbull.2010.10.009
Google Scholar
[12]
Zhang, Q. & Saito, F. (2000) Mechanochemical synthesis of LaMnO3 from La2O3 and Mn2O3 powders. Journal of Alloys and Compounds 297 99–103.
DOI: 10.1016/s0925-8388(99)00606-4
Google Scholar
[13]
Conceição, L., Silva, A. M., Ribeiro, N. F. P., Souza, M. M. V. M. (2009) Influence of the synthesis method on the porosity, microstructure and electrical properties of La0. 7Sr0. 3MnO3 cathode materials. Materials Characterization 60 1417–1423.
DOI: 10.1016/j.matchar.2009.06.017
Google Scholar
[14]
Bernstein, J. (2007) Polymorphism in Molecular Crystals. OUP Oxford. 14 430 pages.
Google Scholar
[15]
Mizuno, M., Rouanet, A., Yamada, T., Noguchi, T. (1976) Yogyo Kyokaishi. 84 343– 349.
Google Scholar
[16]
Gorelov, V.P., Martem'yanova, Z.S., Balakireva, V.B. (1999) Inorganic Materials. 35 153–157.
Google Scholar
[17]
Lopato, L.M., Nigmanov, B.S., Shevchenko, A.V., Zaitseva, Z.A., Akad. Izv. (1986) Nauk SSSR, Neorganic Materials. 22 771–774.
Google Scholar
[18]
Coutures, J. & Foex, M. (1974) Journal Solid State Chemistry. 11 294– 300.
Google Scholar
[19]
Larson, A.C., & Dreele, R. B. V. (1994) General Structure Analysis System (GSAS): Los Alamos National Laboratory Report (LAUR) 86-748.
Google Scholar
[20]
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography. 34 210.
DOI: 10.1107/s0021889801002242
Google Scholar
[21]
JCPDS Data No.: 00-053-0649.
Google Scholar
[22]
Souza, M. M. V. M., Corte, R. V., Conceição, L. (2013).
Google Scholar