Synthesis of Polycrystalline LaYO3 with Different Sintering Temperature

Article Preview

Abstract:

Synthesis of LaYO3 was carried out via conventional solid state reaction method. The polycrystalline samples were sintered at temperatures in the range of 1300 °C to 1500 °C with each deviation is 50 °C. X-ray diffraction (XRD) analysis indicated that the perovskite ceramic obtained its single phase at 1500 °C with ordered monoclinic perovskite structure. The pure phase sample showed 98.79 % relative density and scanning electron micrographs also proved that the porosity of the sample reduced when sample undergo sintering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kawamoto, H. (2008). Research and Development Trends in Solid Oxide Fuel Cell Materials. Science and Technology Trends.

Google Scholar

[2] Ishihara, T., Matsuda, H., & Takita, Y. (1994). Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. J. Am. Chem. Soc, 116 3801-3803.

DOI: 10.1021/ja00088a016

Google Scholar

[3] Lybye, D., Poulsen, F. W., & Mogensen, M. (2000). Conductivity of A- and B- site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskite. Solid State Ionic, 128 91-103.

DOI: 10.1016/s0167-2738(99)00337-9

Google Scholar

[4] Esaka, T., & Abdullah S.S.B.C. (2010). Oxide ion conduction in the perovskite-type LaYO3 doped with ZrO2. Electrochemistry, 78, issue 11 907-911.

DOI: 10.5796/electrochemistry.78.907

Google Scholar

[5] Wenk, H. & Bulakh, A. (2004). Minerals: Their Constitution and Origin. New York, NY: Cambridge University Press. ISBN 978-0-521-52958-7.

Google Scholar

[6] Bhalla, A.S., Guo, R., Roy, R. (2000) The Perovskite Structure: A Review of Its Role in Ceramic Science and Technology. Mat. Res. Innovat. 4 3-26.

Google Scholar

[7] Andrievskaya, E. R., Lopato, L. M., Ragulya, A. V., Red'ko, V. P. (1999). The system ZrO2–Y2O3–La2O3 and prospective materials on its basis. CIMTEC'98: Getting into 2000. Part A: Techna Srl. 109–16.

Google Scholar

[8] Bell, R. J., Millar, G. J., Drennan, J. (2000) Influence of synthesis route on the catalytic properties of La1−xSrxMnO3. Solid State Ionics 131 211–220.

DOI: 10.1016/s0167-2738(00)00668-8

Google Scholar

[9] Gaudon, M., Laberty-Robert, C., Ansart, F., Stevens, P., Rousset, A. (2002) Preparation and characterization of La1–xSrxMnO3+δ (0≤x ≤0. 6) powder by sol–gel processing. Solid State Sci. 4 125–133.

DOI: 10.1016/s1293-2558(01)01208-0

Google Scholar

[10] Xu, Q., Huang, D., Chen, W., Lee, J., Wang, H., Yuan, R. Z. (2004).

Google Scholar

[11] Conceição, L., Silva, A. M., Ribeiro, N. F. P., Souza, M. M. V. M. (2011) Combustion synthesis of La0. 7Sr0. 3Co0. 5Fe0. 5O3 (LSCF) porous materials for application as cathode in IT-SOFC. Materials Research Bulletin 46 308–314.

DOI: 10.1016/j.materresbull.2010.10.009

Google Scholar

[12] Zhang, Q. & Saito, F. (2000) Mechanochemical synthesis of LaMnO3 from La2O3 and Mn2O3 powders. Journal of Alloys and Compounds 297 99–103.

DOI: 10.1016/s0925-8388(99)00606-4

Google Scholar

[13] Conceição, L., Silva, A. M., Ribeiro, N. F. P., Souza, M. M. V. M. (2009) Influence of the synthesis method on the porosity, microstructure and electrical properties of La0. 7Sr0. 3MnO3 cathode materials. Materials Characterization 60 1417–1423.

DOI: 10.1016/j.matchar.2009.06.017

Google Scholar

[14] Bernstein, J. (2007) Polymorphism in Molecular Crystals. OUP Oxford. 14 430 pages.

Google Scholar

[15] Mizuno, M., Rouanet, A., Yamada, T., Noguchi, T. (1976) Yogyo Kyokaishi. 84 343– 349.

Google Scholar

[16] Gorelov, V.P., Martem'yanova, Z.S., Balakireva, V.B. (1999) Inorganic Materials. 35 153–157.

Google Scholar

[17] Lopato, L.M., Nigmanov, B.S., Shevchenko, A.V., Zaitseva, Z.A., Akad. Izv. (1986) Nauk SSSR, Neorganic Materials. 22 771–774.

Google Scholar

[18] Coutures, J. & Foex, M. (1974) Journal Solid State Chemistry. 11 294– 300.

Google Scholar

[19] Larson, A.C., & Dreele, R. B. V. (1994) General Structure Analysis System (GSAS): Los Alamos National Laboratory Report (LAUR) 86-748.

Google Scholar

[20] Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography. 34 210.

DOI: 10.1107/s0021889801002242

Google Scholar

[21] JCPDS Data No.: 00-053-0649.

Google Scholar

[22] Souza, M. M. V. M., Corte, R. V., Conceição, L. (2013).

Google Scholar