Effect of Mould Pressure and Substitution of Quartz by Rice Husk Ash on the Bulk Density and Compressive Strength of Porcelain Body

Article Preview

Abstract:

RHA has become an important competitive material for preparation of silicon compounds due to high surface area, high grade of amorphous form silica and fine particle sizes. The effect of mould pressure (MP) and substitution of quartz by RHA on bulk density and compressive strength of porcelain body is investigated. RHA is used as a substitute for quartz with different replacement levels (0 wt% - 25 wt%). The samples are pressed into pellets at a mould pressure of 31 MPa, 61 MPa, 91 MPa and 121 MPa. All the pellets are sintered at the temperature of 1200 °C for 2 hours soaking time and at a heating rate of 5 °C per minute. The bulk density and compressive strength are measured at the highest value of 2.42 g/cm3 and 39 MPa for the sample pressed at 91 MPa with the substitution of 20 wt% RHA. The improvement in the properties could be attributed to the sharp changes in the microstructural features as a result of an increase in mullite and glassy phase simultaneously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-139

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Nehdi, J. Duquette and A. El Damatty. Performance of Rice Husk Ash Produced using a New Technology as a Mineral Admixture in Concrete. Cem. Concr. Res. 33(8) (2003), pp.1203-1210.

DOI: 10.1016/s0008-8846(03)00038-3

Google Scholar

[2] P. Chindaprasirt, and S. Rukzon. Strength, Porosity and Corrosion Resistance of Ternary Blend Portland Cement, Rice Husk Ash and Fly Ash Mortar. Constr. Build. Mater. 22(8) (2008), pp.1601-1606.

DOI: 10.1016/j.conbuildmat.2007.06.010

Google Scholar

[3] V. Saraswathy, and H.W. Song. Corrosion Performance of Rice Husk Ash Blended Concrete. Constr. Build. Mater. 21(8 ), (2007), pp.1779-1784.

DOI: 10.1016/j.conbuildmat.2006.05.037

Google Scholar

[4] B.H. Abu Bakar, R. Putrajaya and H. Abdulaziz. Malaysian Rice Husk Ash–Improving the Durability and Corrosion Resistance of Concrete: Pre-review. Concr. Res. Lett. 1(1), (2010), pp.6-13.

Google Scholar

[5] P. Chindaprasirt, S. Homwuttiwong and C. Jaturapitakkul. Strength and Water Permeability of Concrete Containing Palm Oil Fuel Ash and Rice Husk–Bark Ash. Constr. Build. Mater. 21(7), (2007), pp.1492-1499.

DOI: 10.1016/j.conbuildmat.2006.06.015

Google Scholar

[6] G. R. de Sensale, B.A. Ribeiro and A. Gonçalves. Effects of RHA on Autogenous Shrinkage of Portland Cement Pastes. Cem. Concr. Compos. 30(10), (2008), pp.892-897.

DOI: 10.1016/j.cemconcomp.2008.06.014

Google Scholar

[7] D.G. Nair, A. Fraaij, A. Klaassen and A. Kentgens. A Structural Investigation Relating to the Pozzolanic Activity of Rice Husk Ashes. Cem. Concr. Res. 38(6), (2008), pp.861-869.

DOI: 10.1016/j.cemconres.2007.10.004

Google Scholar

[8] R.E. Rodrı́guez-Camacho and R. Uribe-Afif. Importance of using the Natural Pozzolans on Concrete Durability. Cem. Concr. Res. 32(12), (2002), pp.1851-1858.

DOI: 10.1016/s0008-8846(01)00714-1

Google Scholar

[9] R. Zerbino, G. Giaccio and G.C. Isaia. Concrete Incorporating Rice-Husk Ash Without Processing. Constr. Build. Mater. 25(1), (2011), pp.371-378.

DOI: 10.1016/j.conbuildmat.2010.06.016

Google Scholar

[10] M.F.M. Zain, M.N. Islam, F. Mahmud and M. Jamil. Production of Rice Husk Ash for Use in Concrete as a Supplementary Cementitious Material. Constr. Build. Mater. 25(2), (2011), pp.798-805.

DOI: 10.1016/j.conbuildmat.2010.07.003

Google Scholar

[11] S.A. Memon, M.A. Shaikh and H. Akbar. Utilization of Rice Husk Ash as Viscosity Modifying Agent in Self Compacting Concrete. Constr. Build. Mater. 25(2), (2011), pp.1044-1048.

DOI: 10.1016/j.conbuildmat.2010.06.074

Google Scholar

[12] M. Zhang and V.M. Malhotra. High-Performance Concrete Incorporating Rice Husk Ash as a Supplementary Cementing Material. J. ACI Mater. 93(6), (1996).

DOI: 10.14359/9870

Google Scholar

[13] K. Ganesan, K. Rajagopal and K. Thangavel. Rice Husk Ash Blended Cement: Assessment of Optimal Level of Replacement for Strength and Permeability Properties of Concrete. Constr. Build. Mater. 22(8), (2008), pp.1675-1683.

DOI: 10.1016/j.conbuildmat.2007.06.011

Google Scholar

[14] N. Ikram and M. Akhter. X-ray Diffraction Analysis of Silicon Prepared from Rice Husk Ash. J. Mater. Sci. 23(7), (1988), pp.2379-2381.

DOI: 10.1007/bf01111891

Google Scholar

[15] F.J. Narciso-Romero and F. Rodriguez-Reinoso. Synthesis of SiC from Rice Husks Catalysed by Iron, Cobalt or Nickel. J. Mater. Sci. 31(3), (1996), pp.779-784.

DOI: 10.1007/bf00367899

Google Scholar

[16] Pérez, J. M., Rincón, J. M., & Romero, M. Effect of Moulding Pressure on Microstructure and Technological Properties of Porcelain Stoneware. Cer. Int. 38(1), (2012), pp.317-325.

DOI: 10.1016/j.ceramint.2011.07.009

Google Scholar

[17] Abadir, M. F., Sallam, E. H., & Bakr, I. M. Preparation of Porcelain Tiles from Egyptian Raw Materials. Cer. Int. 28(3), (2002), pp.303-310.

DOI: 10.1016/s0272-8842(01)00095-5

Google Scholar

[18] H.U. Jamo, M.Z. Noh and Z.A. Ahmad. Influence of Temperature on the Substitution of Quartz by Rice Husk Ash (RHA) in Porcelain Composition. Appl. Mech. Mater. 465, (2014), pp.1297-1303.

DOI: 10.4028/www.scientific.net/amm.465-466.1297

Google Scholar