Selective Occupancy of Sites by Rare Earths in K2Nd(1-X)EuxNb5O15 Nanopowders, where X = 0, 0.0025, 0.025, 0.05 and 0.1, Prepared by Modified Polyol Method

Article Preview

Abstract:

Niobates with tetragonal tungsten bronze TTB-type structure have presented great technological potential due to their dielectric, ferroelectric, pyroelectric properties. The preparation by the modified polyol method and structural characterization of K2Nd(1-x)EuxNb5O15 nanopowders, where x = 0; 0.0025; 0.025; 0.05 e 0.1, were investigated. The structural parameters were analyzed as a function of concentration of europium ions in the K2NdNb5O15 host structure using the Rietveld method. From structural parameters was determined the TTB-type structure with tetragonal symmetry, where the pentagonal sites is occupied by K+ and Eu3+ ions and tetragonal sites is occupied only by Nd3+ ions. The addition of europium in the host structure led to a decrease in the lattice parameters, compatible with the increasing degree of distortion of NbO6 polyhedra. The average crystallite size showed values between 18.25 and 26nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

361-366

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Wul, I.M. Goldman: C.R. Acd. Sci. Vol. 46 (1945), p.139.

Google Scholar

[2] P. Rakbamrung, M. Lallart, D. Guyomar, N. Muensit, C. Thanachayanont, C. Lucat, B. Guiffard, L. Petit, P. Sukwisut: Sens. Actuators A: Phys. Vol. 183 (2010), p.493.

DOI: 10.1016/j.sna.2010.08.028

Google Scholar

[3] Y.D. Hou, M.K. Zhu, C.S. Tian, H. Yan: Sens. Actuators A: Phys. Vol. 116 (2004), p.455.

Google Scholar

[4] J.F. Scott: Science Vol. 315 (2007), p.954.

Google Scholar

[5] E. Ringgaard, T. Wurlitzer: J. Eur. Ceram. Soc. Vol. 25 (2005), p.2701.

Google Scholar

[6] A. Simon, J. Ravez: C.R. Chimie Vol. 9 (2006), p.1268.

Google Scholar

[7] S. Lanfredi, C.X. Cardoso, M.A.L. Nobre: Mater. Sci. Eng. B Vol. 112 (2004), p.139.

Google Scholar

[8] S. Lanfredi, D.H.M. Gênova, I.A.O. Brito, A.R.F. Lima, M.A.L. Nobre: J. Solid State Chem. Vol. 184 (2011), p.990.

Google Scholar

[9] S. Lanfredi, G. Palacio, F.S. Bellucci, C.V. Colin, M.A.L. Nobre: J. Phys. D. Appl. Phys. Vol. 45 (2012), p.435302.

Google Scholar

[10] P.B. Jamieson, S.C. Abrahams, J. L. Brenstein: J. Chem. Phys, Vol. 50 (1969), p.4352.

Google Scholar

[11] S.C. Abrahams, P.B. Jamieson, J.L. Brenstein: J. Chem. Phys Vol. 54 (1971), p.2355.

Google Scholar

[12] S. Lanfredi, M.A.L. Nobre, A.R.F. Lima: Quím. Nova Vol. 33 (2010), p.1071.

Google Scholar

[13] S. Lanfredi, I.A.O. Brito, C. Polini, M.A.L. Nobre: J. Appl. Spectros. Vol. 79 (2012), p.254.

Google Scholar

[14] S. Lanfredi, C. Darie, F.S. Bellucci, C.V. Colin, M.A.L. Nobre: Dalton Trans. Vol 43 (2014), p.10983.

DOI: 10.1039/c4dt00623b

Google Scholar

[15] J.R. Carvajal: An introduction to the Program FullProff 2000, CEA/Saclay, France (2008).

Google Scholar

[16] G. Caglioti, A. Paoletti, F.P. Ricci: Nucl. Instrum. Vol. 3 (1958), p.223.

Google Scholar

[17] Diamond, Crystal and Molecular Structure Visualization, Crystal Impact, Inc. 1998-(2009).

Google Scholar

[18] Jade 8 Plus, XRD Pattern Processing and Identification Program, Materials Data, Inc. 1995-(2007).

Google Scholar