Study of the Influence of Eu3+ Ions in the Bandgap of K2NdNb5O15 Nanopowders

Article Preview

Abstract:

Ferroelectric semiconductors oxides with tetragonal tungsten bronze TTB-type structure doped with rare earth ions have been investigated in recent years due their promising optical properties. K2Nd(1-x)EuxNb5O15 nanopowders, where x = 0, 0.0025, 0.025, 0.05 and 0.1 were synthesized by the modified polyol method and characterized by X-ray diffraction and diffuse reflectance spectroscopy UV-Vis. Single phase and crystalline powders of tetragonal symmetry with non-centrosymmetric space group P4bm were obtained. The diffuse reflectance spectra were similar to the profile of a semiconductor material with the presence of thin transitions of Eu3+ in europium-doped K2NdNb5O15, as well as the transitions of Nd3+. The method of Kubelka-Munk was used for the estimation of bandgap energy. The values around 3.7 eV showed small variation with the concentration of Eu3+ ions in the K2NdNb5O15 host structure. The transitions were identified as direct ones type.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

378-383

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Lanfredi, G. Palacio, F.S. Bellucci, C.V. Colin, M.A.L. Nobre: J. Phys. D: Appl. Phys. Vol. 45 (2012), p.435302.

Google Scholar

[2] J. Matos, P.S. Poon, S. Lanfredi, M.A.L. Nobre: Fuel Vol. 107 (2013), p.503.

Google Scholar

[3] D. Kolar, S. Gaberscek, Z. Stadler, D. Suvorov: Ferroelectrics Vol. 27 (1980), p.269.

Google Scholar

[4] S. Lanfredi, C.X. Cardoso, M.A. L. Nobre: Mater. Sci. Eng. B Vol. 112 (2004), p.139.

Google Scholar

[5] S. Lanfredi, D.H.M. Gênova, I.A.O. Brito, A.R.F. Lima, M.A.L. Nobre: J. Solid State Chem. Vol. 184 (2011), p.990.

Google Scholar

[6] A. Simon, J. Ravez: C.R. Chimie Vol. 9 (2006), p.1268.

Google Scholar

[7] E.A. Giess, G. Burns, D.F. O'Kane, A.W. Smith: Appl. Phys. Lett. Vol. 11 (1967), p.233.

Google Scholar

[8] C. Kittel: Introduction to Solid State Physics. (John Wiley & Sons, Inc. New York, 1978).

Google Scholar

[9] S. Lanfredi, I.A. O Brito, C. Polini, M.A. L. Nobre: J. Appl. Spectros. Vol. 79 (2012), p.254.

Google Scholar

[10] A.A. Christy, O.M. Kvalheim, R.A. Velapoldi: Vib. Spectrosc. Vol. 9 (1995), p.19.

Google Scholar

[11] B.M. Weckhuysen, R.A. Schoonheydt: Catal. Today Vol. 49 (1999), p.441.

Google Scholar

[12] B. Preetha, C. Janardanan: Res. J. Recent. Sci. Vol. 2277 (2012), p.2502.

Google Scholar

[13] X. Qi, H.G. Gallagher, T.P.J. Hart, B. Henderson, R. Illingworth, I.S. Ruddock: Chem. Phys. Lett. Vol. 264 (1997), p.623.

Google Scholar

[14] L.V. Azároff, M.J. Buerguer: The Powder Method in X-Ray Crystallography. (McGraw-Hill First ed. New York, 1958).

Google Scholar

[15] S. Lanfredi, M.A.L. Nobre, A. R.F. Lima: Quím. Nova Vol. 33 (2010), p.1071.

Google Scholar

[16] S.S. Silva, F. Magalhães, M.T.C. Sansiviero: Quim. Nova, Vol. 33 (2010), p.85.

Google Scholar

[17] R. López, R. Gómez: J. Sol-Gel Sci. Technol. Vol. 61 (2012), p.1.

Google Scholar