Study of Sintering Behavior of Ceramic Composite Al2O3-TiO2 Rare Reinforcing with La2O3 Possible Application as Ceramic Cutting Tools

Article Preview

Abstract:

In this work, composite ceramic was produced to base Al2O3 reinforced with 35% weight TiO2 and variation 0-2% La2O3, were evaluated properties to study their microstructural characteristic and mechanical properties as applicable cutting tools. The ceramic composites were produced by thermo-mechanical process. It was observed from the results of XRD after sintering no new phase is formed, besides the characteristics of the precursor oxides. According to the result of particle size analysis before and 24 hours after milling, there was a reduction of the average diameter of agglomerate 95.25% which is suitable to assist sintering of the composite, because this reduction increases the reaction rate the raw material during firing. At microdurezavickers test it was observed that the sample with 1.5% La2O3 showed better hardness results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-404

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.E. Diniz, F.C. Marcondes, N.L. Coppini: Tecnologia da Usinagem dos Materiais. (Ed. Mm São Paulo, 1999).

Google Scholar

[2] A.S. Kumar, A.R. Durai, T. Sornakumar: International Journal of Refractory Metals & Hard Materials Vol. 22 (2004), p.17.

Google Scholar

[3] C. Xu, C. Huang, X. Ai: Ceramics International Vol. 32 (6) (2006), p.423.

Google Scholar

[4] J.P. Davim: Princípios da Maquinagem. (Ed. Técnicas Publindústria Portugal, 2008).

Google Scholar

[5] S.C. Santos: Aspecto Tribológicos da Usinagem dos Materiais. (Ed. Artliber São Paulo, 2007).

Google Scholar

[6] C. Xu, C. Huang, X. Ai: Ceramics International Vol. 32 (6) (2006), p.423.

Google Scholar

[7] C. Xu, C. Huang, X. Ai: Mater. Vol. 11 (5) (1997), p.46.

Google Scholar

[8] C. Xu, X. Ai: Bull Chinese Ceram Soc Vol. 17 (3) (1998), p.64.

Google Scholar

[9] K.W. Chae, D.Y. Kim: J. Am. Ceram. Soc. Vol. 76 (7) (1993), p.1857.

Google Scholar

[10] C. Xu, C. Huang, X. Ai: J. Mater. Eng. Perform. Vol. 10 (1) (2001), p.102.

Google Scholar

[11] S. Liu, W. Tao, J. Li, Z. Yang, F. Liu: Powder Technology Vol. 155 (2005), p.187.

Google Scholar

[12] S.C. Okumus: Materials Letters Vol. 59 (2005), p.3214.

Google Scholar

[13] Y. Wang et el: Applied Surface Science Vol. 255 (2009), p.8603.

Google Scholar

[14] Y. Wang et el: Surface & Coatings Technology Vol. 204 (2010), p.3559.

Google Scholar

[15] JCPDS - Joint Commite on Powder Diffraction Starndard, International Center of Diffraction Data.

Google Scholar

[16] X.S. Li: Key Eng. Mater Vol. 96 (1994), p.1.

Google Scholar

[17] M.S. Niasari, G. Hosseinzadeh, F. Davar: Journal of Alloys and Compounds Vol. 509 (2011), p.4098.

Google Scholar

[18] A. Murugan et al.: Journal of Physics D Applied Physics Vol. 39 (2006), p.3974.

Google Scholar

[19] M. Nieminen, M. Putkonen, L. Niinisto: Applied Surface Science Vol. 174 (2001), p.155.

Google Scholar

[20] JCPDS - Joint Commite on Powder Diffraction Starndard, International Center of Diffraction Data.

Google Scholar

[21] S.A.B.C. Rêgo: Desenvolvimento e produção de cerâmica Al2O3-TiO2 reforçada com óxido de terras raras céria e lantânia para revestimento inerte de peças metálicas da indústria petrolífera. Doutorado (Tese). Recife, 2012. Universidade Federal de Pernambuco (UFPE/EM). PE.

DOI: 10.22239/2317-269x.01933

Google Scholar